Documentation Verification Report

RpowTendsto

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Log/RpowTendsto.lean

Statistics

MetricCount
Definitions0
Theoremsnorm_inv_mul_rpow_sub_one_sub_log_le, tendstoLocallyUniformlyOn_rpow_sub_one_log, tendsto_rpow_sub_one_log
3
Total3

Real

Theorems

NameKindAssumesProvesValidatesDepends On
norm_inv_mul_rpow_sub_one_sub_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
Norm.norm
norm
instMul
log
instOne
instSub
instInv
instPow
Monoid.toNatPow
instMonoid
β€”norm_mul
NormedDivisionRing.toNormMulClass
norm_of_nonneg
mul_comm
exp_mul
exp_log
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
instIsOrderedRing
norm_exp_sub_one_sub_id_le
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
tendstoLocallyUniformlyOn_rpow_sub_one_log πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
instInv
instSub
instPow
instOne
log
nhdsWithin
instZero
Set.Ioi
instPreorder
β€”tendstoLocallyUniformlyOn_iff_forall_isCompact
locallyCompact_of_proper
instProperSpaceReal
isOpen_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
Filter.HasBasis.tendstoUniformlyOn_iff_of_uniformity
Metric.uniformity_basis_dist_le
sSup_nonneg
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Filter.HasBasis.mem_of_mem
nhdsGT_basis
instOrderTopologyReal
instNoMaxOrderOfNontrivial
Filter.Eventually.filter_mono
nhdsWithin_le_nhds
eventually_le_nhds
instClosedIciTopology
ContinuousOn.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousOn.norm
ContinuousOn.log
continuousOn_id'
Filter.mp_mem
Filter.univ_mem'
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
norm_nonneg
div_le_divβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
le_refl
add_le_add_left
le_csSup
div_le_oneβ‚€
dist_eq_norm'
norm_inv_mul_rpow_sub_one_sub_log_le
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
mul_le_mul

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_rpow_sub_one_log πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instMul
Real.instInv
Real.instSub
Real.instPow
Real.instOne
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
nhds
Real.log
β€”TendstoLocallyUniformlyOn.tendsto_at
Real.tendstoLocallyUniformlyOn_rpow_sub_one_log

---

← Back to Index