Documentation Verification Report

Summable

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Log/Summable.lean

Statistics

MetricCount
Definitions0
Theoremscexp_tsum_eq_tprod, hasProd_of_hasSum_log, multipliable_of_summable_log, multipliable_one_add_of_summable, summable_log_one_add_of_summable, norm_prod_one_add_sub_one_le, eventually_bounded_finset_prod, hasProd_of_hasSum_log, multipliable_of_summable_log, multipliable_of_summable_log', multipliable_one_add_of_summable, rexp_tsum_eq_tprod, summable_log_one_add_of_summable, summable_log_norm_one_add, multipliable_norm_one_add_of_summable_norm, multipliable_one_add_of_summable, prod_vanishing_of_summable_norm, tprod_one_add_ne_zero_of_summable
18
Total18

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
cexp_tsum_eq_tprod πŸ“–mathematicalSummable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
log
SummationFilter.unconditional
exp
tsum
tprod
CommRing.toCommMonoid
commRing
β€”HasProd.tprod_eq
instT2Space
SummationFilter.instNeBotUnconditional
hasProd_of_hasSum_log
Summable.hasSum
hasProd_of_hasSum_log πŸ“–mathematicalHasSum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
log
SummationFilter.unconditional
HasProd
CommRing.toCommMonoid
commRing
exp
β€”Filter.Tendsto.congr
Finset.prod_congr
exp_log
HasSum.cexp
multipliable_of_summable_log πŸ“–mathematicalSummable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
log
SummationFilter.unconditional
Multipliable
CommRing.toCommMonoid
commRing
β€”multipliable_of_exists_eq_zero
SummationFilter.instLeAtTopUnconditional
hasProd_of_hasSum_log
Summable.hasSum
multipliable_one_add_of_summable πŸ“–mathematicalSummable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
SummationFilter.unconditional
Multipliable
CommRing.toCommMonoid
commRing
instAdd
instOne
β€”multipliable_of_summable_log
summable_log_one_add_of_summable
summable_log_one_add_of_summable πŸ“–mathematicalSummable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
SummationFilter.unconditional
log
instAdd
instOne
β€”Summable.of_norm_bounded_eventually
instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Summable.norm
FiniteDimensional.rclike_to_real
Filter.mp_mem
Filter.Tendsto.eventually_le_const
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
Filter.univ_mem'
norm_log_one_add_half_le_self

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
norm_prod_one_add_sub_one_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
prod
CommRing.toCommMonoid
NormedCommRing.toCommRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
Real.instSub
Real.exp
sum
Real.instAddCommMonoid
Real.instOne
β€”induction_on
sub_self
norm_zero
Real.exp_zero
prod_insert
sum_insert
Real.exp_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
LE.le.trans
norm_add_le_of_le
norm_mul_le
sub_add_eq_add_sub
sub_le_sub_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_imp_le_of_le_of_le
add_le_add_right
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_le_norm_sub_add
norm_nonneg
le_refl
add_le_add_left
NormOneClass.norm_one
sub_add_cancel
one_add_mul
Distrib.rightDistribClass
add_comm
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.add_one_le_exp
Real.exp_nonneg

Multipliable

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_bounded_finset_prod πŸ“–mathematicalMultipliable
Real
Real.instCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Real.instLT
Real.instZero
Real.instLE
Finset.prod
β€”NoMaxOrder.exists_gt
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.Tendsto.eventually_le_const
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
max_lt_iff
hasProd
Filter.eventually_atTop
Finset.isDirected_le
SummationFilter.unconditional.eq_1

Real

Theorems

NameKindAssumesProvesValidatesDepends On
hasProd_of_hasSum_log πŸ“–mathematicalReal
instLT
instZero
HasSum
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
log
SummationFilter.unconditional
HasProd
instCommMonoid
exp
β€”Filter.Tendsto.congr
Finset.prod_congr
exp_log
HasSum.rexp
multipliable_of_summable_log πŸ“–mathematicalReal
instLT
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
log
SummationFilter.unconditional
Multipliable
instCommMonoid
β€”hasProd_of_hasSum_log
Summable.hasSum
multipliable_of_summable_log' πŸ“–mathematicalSummable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
log
SummationFilter.unconditional
Multipliable
instCommMonoid
β€”Summable.congr_cofinite
instIsTopologicalAddGroupReal
Filter.mp_mem
Filter.univ_mem'
multipliable_of_summable_log
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Multipliable.congr_cofiniteβ‚€
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
multipliable_one_add_of_summable πŸ“–mathematicalSummable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SummationFilter.unconditional
Multipliable
instCommMonoid
instAdd
instOne
β€”multipliable_of_summable_log'
Filter.mp_mem
Filter.Tendsto.eventually_const_lt
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
neg_one_lt_zero
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
Filter.univ_mem'
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
summable_log_one_add_of_summable
rexp_tsum_eq_tprod πŸ“–mathematicalReal
instLT
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
log
SummationFilter.unconditional
exp
tsum
tprod
instCommMonoid
β€”HasProd.tprod_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasProd_of_hasSum_log
Summable.hasSum
summable_log_one_add_of_summable πŸ“–mathematicalSummable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SummationFilter.unconditional
log
instAdd
instOne
β€”Complex.summable_ofReal
Summable.congr_cofinite
SeminormedAddCommGroup.toIsTopologicalAddGroup
Complex.summable_log_one_add_of_summable
Filter.mp_mem
Filter.Tendsto.eventually_const_le
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
neg_one_lt_zero
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
Filter.univ_mem'
Complex.ofReal_log
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Complex.ofReal_add
Complex.ofReal_one

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
summable_log_norm_one_add πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
SummationFilter.unconditional
Real.log
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”of_norm
Real.instCompleteSpace
of_nonneg_of_le
norm_nonneg
Real.instIsOrderedAddMonoid
IsOrderedAddMonoid.toAddLeftMono
add_neg_cancel_right
NormOneClass.norm_one
norm_neg
norm_add_le
add_comm
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
congr
Real.summable_log_one_add_of_summable
add_sub_cancel

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
multipliable_norm_one_add_of_summable_norm πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
SummationFilter.unconditional
Multipliable
Real.instCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”sub_add_cancel
add_comm
Real.multipliable_one_add_of_summable
Summable.of_norm_bounded
Real.instCompleteSpace
NormOneClass.norm_one
add_sub_cancel_left
abs_norm_sub_norm_le
multipliable_one_add_of_summable πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
SummationFilter.unconditional
Multipliable
CommRing.toCommMonoid
NormedCommRing.toCommRing
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”CompleteSpace.complete
Metric.cauchy_iff
Filter.map_neBot
SummationFilter.instNeBotFinsetFilterOfNeBot
SummationFilter.instNeBotUnconditional
Multipliable.eventually_bounded_finset_prod
multipliable_norm_one_add_of_summable_norm
Nat.instAtLeastTwoHAddOfNat
prod_vanishing_of_summable_norm
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Finset.prod_congr
Finset.isDirected_le
Finset.union_sdiff_of_subset
Finset.prod_union
Disjoint.symm
Finset.sdiff_disjoint
Metric.mem_ball
dist_eq_norm_sub
mul_sub_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
LE.le.trans_lt
norm_mul_le
lt_of_le_of_lt
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
LE.le.trans
Finset.norm_prod_le
Finset.subset_union_left
norm_nonneg
mul_lt_mul_of_pos_left
Finset.sdiff_union_distrib
Finset.inter_assoc
Finset.sdiff_inter_self
Finset.inter_empty
dist_triangle_right
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_halves
CharZero.NeZero.two
prod_vanishing_of_summable_norm πŸ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
SummationFilter.unconditional
Real.instLT
Real.instZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
Finset.prod
CommRing.toCommMonoid
NormedCommRing.toCommRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”Real.exp_zero
sub_self
Iio_mem_nhds
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ContinuousAt.preimage_mem_nhds
ContinuousAt.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
ContinuousAt.rexp
continuousAt_id'
continuousAt_const
Summable.vanishing
LE.le.trans_lt
Finset.norm_prod_one_add_sub_one_le
tprod_one_add_ne_zero_of_summable πŸ“–β€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
SummationFilter.unconditional
β€”β€”norm_ne_zero_iff
Multipliable.norm_tprod
multipliable_one_add_of_summable
Real.rexp_tsum_eq_tprod
norm_pos_iff
Summable.summable_log_norm_one_add
Real.exp_ne_zero

---

← Back to Index