Documentation Verification Report

Asymptotics

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean

Statistics

MetricCount
Definitions0
Theoremsid_rpow_of_le_one, mul_atTop_rpow_natCast_of_isBigO_rpow, mul_atTop_rpow_of_isBigO_rpow, rpow, rpow_rpow_nhdsGE_zero_of_le, rpow_rpow_nhdsGE_zero_of_le_of_imp, rpow, rpow, rpow, isBigO_atTop_natCast_rpow_of_tendsto_div_rpow, isBigO_cpow_rpow, isTheta_cpow_const_rpow, isTheta_cpow_rpow, isTheta_exp_arg_mul_im, tendsto_rpow_at_top, tendsto_rpow_atTop, isLittleO_abs_log_rpow_rpow_nhdsGT_zero, isLittleO_exp_mul_rpow_of_lt, isLittleO_exp_neg_mul_rpow_atTop, isLittleO_log_rpow_atTop, isLittleO_log_rpow_nhdsGT_zero, isLittleO_log_rpow_rpow_atTop, isLittleO_pow_exp_pos_mul_atTop, isLittleO_rpow_exp_atTop, isLittleO_rpow_exp_pos_mul_atTop, isLittleO_zpow_exp_pos_mul_atTop, tendsto_exp_div_rpow_atTop, tendsto_exp_mul_div_rpow_atTop, tendsto_log_div_rpow_nhdsGT_zero, tendsto_log_mul_rpow_nhdsGT_zero, tendsto_log_mul_self_nhdsLT_zero, tendsto_rpow_atBot_of_base_gt_one, tendsto_rpow_atBot_of_base_lt_one, tendsto_rpow_atTop, tendsto_rpow_atTop_of_base_gt_one, tendsto_rpow_atTop_of_base_lt_one, tendsto_rpow_div, tendsto_rpow_div_mul_add, tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero, tendsto_rpow_neg_atTop, tendsto_rpow_neg_div, tendsto_rpow_neg_nhdsGT_zero
42
Total42

Asymptotics

Theorems

NameKindAssumesProvesValidatesDepends On
isBigO_atTop_natCast_rpow_of_tendsto_div_rpow πŸ“–mathematicalFilter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RCLike.ofReal
Real
Real.instPow
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsBigO
NormedField.toNorm
Real.norm
β€”IsBigO.of_norm_left
isBigO_of_div_tendsto_nhds
Filter.mp_mem
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
Real.instIsOrderedRing
RCLike.charZero_rclike
instIsEmptyFalse
Filter.Tendsto.congr
norm_div
norm_algebraMap'
NormedDivisionRing.to_normOneClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.rpow_nonneg
Nat.cast_nonneg'
Real.instZeroLEOneClass
Filter.Tendsto.norm

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
id_rpow_of_le_one πŸ“–mathematicalReal
Real.instLE
Real.instOne
Asymptotics.IsBigO
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ici
Real.instPreorder
Real.instPow
β€”Real.rpow_one
rpow_rpow_nhdsGE_zero_of_le
NeZero.charZero_one
RCLike.charZero_rclike
mul_atTop_rpow_natCast_of_isBigO_rpow πŸ“–mathematicalAsymptotics.IsBigO
Real
SeminormedRing.toNorm
Real.norm
Filter.atTop
Nat.instPreorder
Real.instPow
Real.instNatCast
Real.instLE
Real.instAdd
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
β€”trans
mul
NormedDivisionRing.toNormMulClass
Filter.Eventually.isBigO
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Nat.one_le_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Real.rpow_add
LT.lt.trans_le
zero_lt_one
NeZero.charZero_one
Real.norm_of_nonneg
Real.rpow_nonneg
LE.le.trans
zero_le_one
Real.rpow_le_rpow_of_exponent_le
mul_atTop_rpow_of_isBigO_rpow πŸ“–mathematicalAsymptotics.IsBigO
Real
SeminormedRing.toNorm
Real.norm
Filter.atTop
Real.instPreorder
Real.instPow
Real.instLE
Real.instAdd
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
β€”trans
mul
NormedDivisionRing.toNormMulClass
Filter.Eventually.isBigO
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Real.rpow_add
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.norm_of_nonneg
Real.rpow_nonneg
LE.le.trans
zero_le_one
Real.rpow_le_rpow_of_exponent_le
rpow πŸ“–mathematicalReal
Real.instLE
Real.instZero
Filter.EventuallyLE
Pi.instZero
Asymptotics.IsBigO
Real.norm
Real.instPowβ€”exists_nonneg
Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.rpow
rpow_rpow_nhdsGE_zero_of_le πŸ“–mathematicalReal
Real.instLE
Asymptotics.IsBigO
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ici
Real.instPreorder
Real.instPow
β€”rpow_rpow_nhdsGE_zero_of_le_of_imp
rpow_rpow_nhdsGE_zero_of_le_of_imp πŸ“–mathematicalReal
Real.instLE
Real.instZero
Asymptotics.IsBigO
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ici
Real.instPreorder
Real.instPow
β€”of_bound'
Filter.mem_of_superset
Icc_mem_nhdsGE
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.abs_rpow_of_nonneg
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.rpow_le_rpow_of_exponent_ge_of_imp

Asymptotics.IsBigOWith

Theorems

NameKindAssumesProvesValidatesDepends On
rpow πŸ“–mathematicalAsymptotics.IsBigOWith
Real
Real.norm
Real.instLE
Real.instZero
Filter.EventuallyLE
Pi.instZero
Real.instPowβ€”of_bound
Filter.mp_mem
bound
Filter.univ_mem'
Real.abs_rpow_le_abs_rpow
Real.rpow_le_rpow
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.mul_rpow
Real.abs_rpow_of_nonneg

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
rpow πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.EventuallyLE
Real.instLE
Pi.instZero
Asymptotics.IsLittleO
Real.norm
Real.instPowβ€”of_isBigOWith
Real.rpow_inv_rpow
LT.lt.le
LT.lt.ne'
Asymptotics.IsBigOWith.rpow
forall_isBigOWith
Real.rpow_pos_of_pos
le_of_lt

Asymptotics.IsTheta

Theorems

NameKindAssumesProvesValidatesDepends On
rpow πŸ“–mathematicalReal
Real.instLE
Real.instZero
Filter.EventuallyLE
Pi.instZero
Asymptotics.IsTheta
Real.norm
Real.instPowβ€”Asymptotics.IsBigO.rpow

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
isBigO_cpow_rpow πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
im
Asymptotics.IsBigO
Complex
instNorm
Real.norm
instPow
Real.instPow
Norm.norm
re
β€”Asymptotics.isBigO_of_le
LE.le.trans
norm_cpow_le
le_abs_self
Asymptotics.IsTheta.div
Asymptotics.isTheta_refl
isTheta_exp_arg_mul_im
div_one
isTheta_cpow_const_rpow πŸ“–mathematicalFilter.Eventually
Complex
instZero
Asymptotics.IsTheta
Real
instNorm
Real.norm
instPow
Real.instPow
Norm.norm
re
β€”isTheta_cpow_rpow
Filter.isBoundedUnder_const
instReflLe
Imp.swap
isTheta_cpow_rpow πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
im
Filter.Eventually
Asymptotics.IsTheta
Complex
instNorm
Real.norm
instPow
Real.instPow
Norm.norm
re
β€”Asymptotics.IsTheta.of_norm_eventuallyEq
Filter.Eventually.mono
norm_cpow_of_imp
Asymptotics.IsTheta.div
Asymptotics.isTheta_refl
isTheta_exp_arg_mul_im
div_one
isTheta_exp_arg_mul_im πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
im
Asymptotics.IsTheta
Real.norm
Real.exp
Real.instMul
arg
Real.instOne
β€”Real.isTheta_exp_comp_one
Filter.eventually_map
Filter.Eventually.mono
abs_mul
Real.instIsOrderedRing
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
abs_arg_le_pi
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
Real.pi_pos

ENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_rpow_at_top πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
ENNReal
instPowReal
nhds
instTopologicalSpace
Top.top
instTopENNReal
β€”tendsto_nhds_top_iff_nnreal
Filter.HasBasis.tendsto_iff
Filter.atTop_basis_Ioi
instIsDirectedOrder
NNReal.instIsOrderedRing
NNReal.instArchimedean
IsStrictOrderedRing.toNoMaxOrder
NNReal.instIsStrictOrderedRing
NNReal.tendsto_rpow_atTop
Ioi_mem_nhds
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopology
coe_lt_top
Filter.mp_mem
Filter.univ_mem'
top_rpow_of_pos
CanLift.prf
canLift
coe_rpow_of_nonneg
LT.lt.le

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
NNReal
instPowReal
Filter.atTop
PartialOrder.toPreorder
instPartialOrderNNReal
β€”Filter.tendsto_atTop_atTop
instIsDirectedOrder
instIsOrderedRing
instArchimedean
Real.instIsOrderedRing
Real.instArchimedean
tendsto_rpow_atTop
Real.toNNReal_le_iff_le_coe

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isLittleO_abs_log_rpow_rpow_nhdsGT_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
Real.instPow
abs
Real.lattice
Real.instAddGroup
Real.log
β€”Asymptotics.IsLittleO.congr'
Asymptotics.IsLittleO.comp_tendsto
isLittleO_log_rpow_rpow_atTop
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
tendsto_inv_nhdsGT_zero
Real.instIsStrictOrderedRing
instOrderTopologyReal
Filter.mem_of_superset
Icc_mem_nhdsGT
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.log_inv
abs_of_nonpos
Real.log_nonpos
Filter.Eventually.mono
eventually_mem_nhdsWithin
Real.inv_rpow
LT.lt.le
Membership.mem.out
Real.rpow_neg
inv_inv
isLittleO_exp_mul_rpow_of_lt πŸ“–mathematicalReal
Real.instLT
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Real.instMul
Real.exp
Real.instPow
β€”Asymptotics.isLittleO_of_tendsto
Real.exp_ne_zero
neg_sub
mul_comm
tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
isLittleO_exp_neg_mul_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Real.exp
Real.instMul
Real.instNeg
Real.instPow
β€”Asymptotics.isLittleO_of_tendsto'
Filter.Eventually.mono
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
LT.lt.ne'
Real.rpow_eq_zero_iff_of_nonneg
LT.lt.le
Filter.Tendsto.congr'
Filter.eventually_ge_atTop
Real.rpow_neg
div_inv_eq_mul
mul_inv_rev
neg_mul
Real.exp_neg
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Real.exp_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
one_div
Filter.Tendsto.inv_tendsto_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
tendsto_exp_mul_div_rpow_atTop
isLittleO_log_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Real.log
Real.instPow
β€”Asymptotics.isBigO_self_const_mul
NormedDivisionRing.toNormMulClass
LT.lt.ne'
Filter.Eventually.mono
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.log_rpow
Asymptotics.IsLittleO.comp_tendsto
Real.isLittleO_log_id_atTop
tendsto_rpow_atTop
isLittleO_log_rpow_nhdsGT_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
Real.log
Real.instPow
β€”Asymptotics.IsLittleO.congr'
Asymptotics.IsLittleO.neg_left
isLittleO_abs_log_rpow_rpow_nhdsGT_zero
Filter.mem_of_superset
Icc_mem_nhdsGT
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.rpow_one
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.log_nonpos
neg_neg
Filter.EventuallyEq.rfl
isLittleO_log_rpow_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Real.instPow
Real.log
β€”lt_max_iff
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Asymptotics.IsBigO.of_norm_eventuallyLE
Filter.mp_mem
Filter.Tendsto.eventually_ge_atTop
Real.tendsto_log_atTop
Filter.univ_mem'
Real.norm_of_nonneg
le_of_lt
Real.rpow_pos_of_pos
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Real.rpow_le_rpow_of_exponent_le
le_max_left
Asymptotics.IsLittleO.rpow
Filter.Tendsto.eventually
tendsto_rpow_atTop
Filter.eventually_ge_atTop
isLittleO_log_rpow_atTop
Filter.Eventually.mono
Real.rpow_mul
div_mul_cancelβ‚€
LT.lt.ne'
isLittleO_pow_exp_pos_mul_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Monoid.toNatPow
Real.instMonoid
Real.exp
Real.instMul
β€”zpow_natCast
isLittleO_zpow_exp_pos_mul_atTop
isLittleO_rpow_exp_atTop πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Real.instPreorder
Real.instPow
Real.exp
β€”one_mul
isLittleO_rpow_exp_pos_mul_atTop
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
isLittleO_rpow_exp_pos_mul_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Real.instPow
Real.exp
Real.instMul
β€”Asymptotics.isLittleO_of_tendsto
LT.lt.ne'
Real.exp_pos
div_eq_mul_inv
neg_mul
Real.exp_neg
tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero
isLittleO_zpow_exp_pos_mul_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.exp
Real.instMul
β€”Real.rpow_intCast
isLittleO_rpow_exp_pos_mul_atTop
tendsto_exp_div_rpow_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.exp
Real.instPow
Filter.atTop
Real.instPreorder
β€”archimedean_iff_nat_lt
Real.instIsStrictOrderedRing
Real.instArchimedean
Filter.tendsto_atTop_mono'
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Real.exp_pos
le_refl
Real.rpow_pos_of_pos
Real.rpow_natCast
Real.rpow_le_rpow_of_exponent_le
LT.lt.le
Real.tendsto_exp_div_pow_atTop
tendsto_exp_mul_div_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.exp
Real.instMul
Real.instPow
Filter.atTop
Real.instPreorder
β€”Filter.Tendsto.congr'
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Real.div_rpow
LT.lt.le
Real.exp_pos
mul_comm
IsUnit.div_mul_cancel
LT.lt.ne'
Filter.Tendsto.comp
tendsto_rpow_atTop
tendsto_exp_div_rpow_atTop
tendsto_log_div_rpow_nhdsGT_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.log
Real.instPow
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
nhds
β€”Asymptotics.IsLittleO.tendsto_div_nhds_zero
isLittleO_log_rpow_nhdsGT_zero
tendsto_log_mul_rpow_nhdsGT_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instMul
Real.log
Real.instPow
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
nhds
β€”Filter.Tendsto.congr'
Filter.Eventually.mono
eventually_mem_nhdsWithin
Real.rpow_neg
LT.lt.le
Membership.mem.out
div_inv_eq_mul
tendsto_log_div_rpow_nhdsGT_zero
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
tendsto_log_mul_self_nhdsLT_zero πŸ“–mathematicalβ€”Filter.Tendsto
Real
Real.instMul
Real.log
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Iio
Real.instPreorder
nhds
β€”tendsto_log_mul_rpow_nhdsGT_zero
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.log_abs
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.le
mul_neg
neg_neg
tendsto_nhdsWithin_congr
neg_zero
Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
Filter.Tendsto.comp
Real.rpow_one
Filter.Tendsto.mono_left
tendsto_abs_nhdsNE_zero
instOrderTopologyReal
nhdsWithin_mono
LT.lt.ne
tendsto_rpow_atBot_of_base_gt_one πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Tendsto
Real.instPow
Filter.atBot
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”Real.rpow_def_of_pos
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Filter.Tendsto.comp
Real.tendsto_exp_atBot
Filter.tendsto_const_mul_atBot_of_pos
Real.instIsStrictOrderedRing
Real.log_pos_iff
le_of_lt
Filter.tendsto_id
tendsto_rpow_atBot_of_base_lt_one πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instOne
Filter.Tendsto
Real.instPow
Filter.atBot
Real.instPreorder
Filter.atTop
β€”Real.rpow_def_of_pos
Filter.Tendsto.comp
Real.tendsto_exp_atTop
Filter.tendsto_const_mul_atTop_iff_neg
Real.instIsStrictOrderedRing
Filter.atBot_neBot
instIsCodirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Filter.tendsto_id
Real.log_neg_iff
tendsto_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instPow
Filter.atTop
Real.instPreorder
β€”Filter.HasBasis.tendsto_right_iff
Filter.atTop_basis'
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
one_div
tendsto_rpow_atTop_of_base_gt_one πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Tendsto
Real.instPow
Filter.atBot
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”tendsto_rpow_atBot_of_base_gt_one
tendsto_rpow_atTop_of_base_lt_one πŸ“–mathematicalReal
Real.instLT
Real.instNeg
Real.instOne
Filter.Tendsto
Real.instPow
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”lt_trichotomy
Real.rpow_def_of_nonpos
LT.lt.le
LT.lt.ne
Asymptotics.isLittleO_const_iff
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
one_mul
Asymptotics.IsLittleO.mul_isBigO
NormedDivisionRing.toNormMulClass
Filter.Tendsto.comp
Real.tendsto_exp_atBot
Filter.tendsto_const_mul_atBot_of_neg
Real.instIsStrictOrderedRing
Real.log_neg_eq_log
Real.log_neg_iff
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Filter.tendsto_id
Asymptotics.isBigO_iff
Filter.Eventually.of_forall
CStarRing.norm_of_mem_unitary
instCStarRingReal
Real.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
mul_one
Filter.Tendsto.mono_right
Filter.tendsto_pure
Filter.mp_mem
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Filter.univ_mem'
Real.zero_rpow
pure_le_nhds_iff
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
Real.rpow_def_of_pos
tendsto_rpow_div πŸ“–mathematicalβ€”Filter.Tendsto
Real
Real.instPow
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
tendsto_rpow_div_mul_add
zero_ne_one
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_rpow_div_mul_add πŸ“–mathematicalβ€”Filter.Tendsto
Real
Real.instPow
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Real.instMul
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instOne
β€”Filter.Tendsto.congr'
Filter.eventuallyEq_of_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.exp_log
Real.rpow_pos_of_pos
Real.log_rpow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Real.exp_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Filter.Tendsto.comp
Real.tendsto_exp_nhds_zero_nhds_one
pow_one
MulZeroClass.mul_zero
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_const_nhds
Real.tendsto_div_pow_mul_exp_add_atTop
Real.tendsto_log_atTop
tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instMul
Real.instPow
Real.exp
Real.instNeg
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Filter.Tendsto.congr'
Filter.univ_mem'
inv_div
div_eq_mul_inv
neg_mul
Real.exp_neg
Filter.Tendsto.inv_tendsto_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
tendsto_exp_mul_div_rpow_atTop
tendsto_rpow_neg_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instPow
Real.instNeg
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Filter.Tendsto.congr'
Filter.eventuallyEq_of_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.rpow_neg
le_of_lt
Filter.Tendsto.inv_tendsto_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
tendsto_rpow_atTop
tendsto_rpow_neg_div πŸ“–mathematicalβ€”Filter.Tendsto
Real
Real.instPow
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.instOne
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
tendsto_rpow_div_mul_add
zero_ne_one
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_rpow_neg_nhdsGT_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instPow
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
Filter.atTop
β€”neg_neg
Real.rpow_neg_eq_inv_rpow
Filter.Tendsto.comp
tendsto_rpow_atTop
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
tendsto_inv_nhdsGT_zero
Real.instIsStrictOrderedRing
instOrderTopologyReal

---

← Back to Index