Documentation Verification Report

Continuity

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Pow/Continuity.lean

Statistics

MetricCount
Definitions0
TheoremscontinuousAt_cpow_const_of_re_pos, continuousAt_cpow_of_re_pos, continuousAt_cpow_zero_of_re_pos, continuousAt_ofReal_cpow, continuousAt_ofReal_cpow_const, continuous_ofReal_cpow_const, const_cpow, cpow, rpow, rpow_const, const_cpow, cpow, rpow, rpow_const, const_cpow, cpow, cpow_const, rpow, rpow_const, const_cpow, cpow, rpow, rpow_const, continuous_rpow_const, eventually_pow_one_div_le, tendsto_const_mul_rpow_nhds_zero_of_pos, const_cpow, cpow, ennrpow_const, nnrpow, rpow, rpow_const, continuousAt_rpow, continuousAt_rpow_const, continuousOn_rpow_const, continuousOn_rpow_const_compl_zero, continuous_rpow_const, eventually_pow_one_div_le, continuousAt_const_rpow, continuousAt_const_rpow', continuousAt_rpow, continuousAt_rpow_const, continuousAt_rpow_of_ne, continuousAt_rpow_of_pos, continuous_const_rpow, continuous_rpow_const, rpow_eq_nhds_of_neg, rpow_eq_nhds_of_pos, continuousAt_const_cpow, continuousAt_const_cpow', continuousAt_cpow, continuousAt_cpow_const, continuous_const_cpow, cpow_eq_nhds, cpow_eq_nhds', zero_cpow_eq_nhds
56
Total56

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_cpow_const_of_re_pos πŸ“–mathematicalReal
Real.instLE
Real.instZero
re
Real.instLT
ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instPow
β€”Filter.Tendsto.comp
continuousAt_cpow_of_re_pos
ContinuousAt.prodMk
continuousAt_id
continuousAt_const
continuousAt_cpow_of_re_pos πŸ“–mathematicalReal
Real.instLE
Real.instZero
re
Complex
Real.instLT
ContinuousAt
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instPow
β€”not_le_zero_iff
not_and_or
lt_iff_le_and_ne
not_lt_zero_iff
continuousAt_cpow
continuousAt_cpow_zero_of_re_pos
continuousAt_cpow_zero_of_re_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
ContinuousAt
Complex
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instPow
instZero
β€”LT.lt.ne'
ContinuousAt.eq_1
zero_cpow
tendsto_zero_iff_norm_tendsto_zero
squeeze_zero
norm_nonneg
norm_cpow_le
div_eq_mul_inv
Filter.Tendsto.zero_mul_isBoundedUnder_le
norm_zero
Real.zero_rpow
Filter.Tendsto.rpow
Continuous.tendsto
Continuous.norm
continuous_fst
Continuous.comp
continuous_re
continuous_snd
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.exp_pos
NoMaxOrder.exists_gt
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.eventually_map
Filter.Eventually.mono
Filter.Tendsto.eventually
Continuous.abs
instOrderTopologyReal
continuous_im
gt_mem_nhds
Real.exp_le_exp
LE.le.trans
neg_le_abs
abs_mul
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
abs_le
LT.lt.le
neg_pi_lt_arg
arg_le_pi
abs_nonneg
covariant_swap_add_of_covariant_add
Real.pi_pos
continuousAt_ofReal_cpow πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
ContinuousAt
Complex
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instPow
ofReal
β€”lt_trichotomy
ContinuousAt.prodMk
ContinuousAt.comp'
Continuous.continuousAt
continuous_ofReal
ContinuousAt.fst
continuousAt_id'
ContinuousAt.snd
ContinuousAt.comp
continuousAt_cpow
ofReal_re
ofReal_zero
continuousAt_cpow_zero_of_re_pos
ContinuousAt.comp_of_eq
ContinuousAt.neg
IsTopologicalRing.toContinuousNeg
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
neg_re
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ContinuousAt.cexp
ContinuousAt.fun_mul
continuousAt_const
ContinuousAt.congr
Filter.eventually_of_mem
prod_mem_nhds
Iio_mem_nhds
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.univ_mem
ofReal_cpow_of_nonpos
le_of_lt
continuousAt_ofReal_cpow_const πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instPow
ofReal
β€”ContinuousAt.compβ‚‚_of_eq
continuousAt_ofReal_cpow
continuousAt_id'
continuousAt_const
continuous_ofReal_cpow_const πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instPow
ofReal
β€”continuous_iff_continuousAt
continuousAt_ofReal_cpow_const

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
const_cpow πŸ“–mathematicalContinuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPowβ€”continuous_iff_continuousAt
ContinuousAt.const_cpow
continuousAt
cpow πŸ“–mathematicalContinuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.instPowβ€”continuous_iff_continuousAt
ContinuousAt.cpow
continuousAt
rpow πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Real.instPowβ€”continuous_iff_continuousAt
ContinuousAt.rpow
continuousAt
rpow_const πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
Real.instPowβ€”continuous_iff_continuousAt
ContinuousAt.rpow_const
continuousAt

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
const_cpow πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPowβ€”Filter.Tendsto.const_cpow
cpow πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.instPowβ€”Filter.Tendsto.cpow
rpow πŸ“–mathematicalContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Real.instPowβ€”Filter.Tendsto.rpow
rpow_const πŸ“–mathematicalContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
Real.instPowβ€”Filter.Tendsto.rpow_const

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
const_cpow πŸ“–mathematicalContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPowβ€”ContinuousWithinAt.const_cpow
cpow πŸ“–mathematicalContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.instPowβ€”ContinuousWithinAt.cpow
cpow_const πŸ“–mathematicalContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.instPowβ€”cpow
continuousOn_const
rpow πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Real.instPowβ€”ContinuousWithinAt.rpow
rpow_const πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
Real.instPowβ€”ContinuousWithinAt.rpow_const

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
const_cpow πŸ“–mathematicalContinuousWithinAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPowβ€”Filter.Tendsto.const_cpow
cpow πŸ“–mathematicalContinuousWithinAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.instPowβ€”Filter.Tendsto.cpow
rpow πŸ“–mathematicalContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Real.instPowβ€”Filter.Tendsto.rpow
rpow_const πŸ“–mathematicalContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
Real.instPowβ€”Filter.Tendsto.rpow_const

ENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_rpow_const πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
Real
instPowReal
β€”continuous_iff_continuousAt
lt_trichotomy
rpow_zero
continuousAt_const
neg_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
rpow_neg
ContinuousAt.comp
Continuous.continuousAt
ContinuousInv.continuous_inv
instContinuousInv
eventually_pow_one_div_le πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Filter.Eventually
Preorder.toLE
Real
instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”CanLift.prf
canLift
Filter.Eventually.of_forall
le_top
NNReal.eventually_pow_one_div_le
Nat.cast_one
Filter.Eventually.congr
coe_rpow_of_nonneg
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
coe_le_coe
tendsto_const_mul_rpow_nhds_zero_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instPowReal
nhds
instTopologicalSpace
instZeroENNReal
β€”zero_rpow_of_pos
MulZeroClass.mul_zero
Tendsto.const_mul
Continuous.tendsto
continuous_rpow_const

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
const_cpow πŸ“–mathematicalFilter.Tendsto
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPowβ€”comp
ContinuousAt.tendsto
continuousAt_const_cpow
continuousAt_const_cpow'
cpow πŸ“–mathematicalFilter.Tendsto
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.instPowβ€”comp
ContinuousAt.tendsto
continuousAt_cpow
prodMk_nhds
ennrpow_const πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
Real
ENNReal.instPowReal
β€”comp
Continuous.tendsto
ENNReal.continuous_rpow_const
nnrpow πŸ“–mathematicalFilter.Tendsto
NNReal
nhds
NNReal.instTopologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
NNReal.instPowRealβ€”comp
NNReal.continuousAt_rpow
prodMk_nhds
rpow πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Real.instPowβ€”comp
ContinuousAt.tendsto
Real.continuousAt_rpow
prodMk_nhds
rpow_const πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
Real.instPowβ€”Real.rpow_zero
rpow
tendsto_const_nhds
LE.le.lt_of_ne

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_rpow πŸ“–mathematicalReal
Real.instLT
Real.instZero
ContinuousAt
NNReal
instTopologicalSpaceProd
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instPowReal
β€”eq
Nat.cast_zero
zero_le
instCanonicallyOrderedAdd
ContinuousAt.comp
Continuous.continuousAt
continuous_real_toNNReal
Real.continuousAt_rpow
ContinuousAt.prodMk
ContinuousAt.comp'
continuous_subtype_val
ContinuousAt.fst
continuousAt_id'
ContinuousAt.snd
continuousAt_rpow_const πŸ“–mathematicalReal
Real.instLE
Real.instZero
ContinuousAt
NNReal
instTopologicalSpace
instPowReal
β€”Filter.Tendsto.nnrpow
Filter.tendsto_id
tendsto_const_nhds
LE.le.eq_or_lt
rpow_zero
continuousOn_rpow_const πŸ“–mathematicalNNReal
Set
Set.instMembership
instZeroNNReal
Real
Real.instLE
Real.instZero
ContinuousOn
instTopologicalSpace
instPowReal
β€”ContinuousOn.mono
continuousOn_rpow_const_compl_zero
Continuous.continuousOn
continuous_rpow_const
continuousOn_rpow_const_compl_zero πŸ“–mathematicalβ€”ContinuousOn
NNReal
instTopologicalSpace
Real
instPowReal
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
instZeroNNReal
β€”ContinuousAt.continuousWithinAt
continuousAt_rpow_const
continuous_rpow_const πŸ“–mathematicalReal
Real.instLE
Real.instZero
Continuous
NNReal
instTopologicalSpace
instPowReal
β€”continuous_iff_continuousAt
continuousAt_rpow_const
eventually_pow_one_div_le πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
Filter.Eventually
Preorder.toLE
Real
instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”add_one_pow_unbounded_of_pos
instIsStrictOrderedRing
instArchimedean
tsub_pos_of_lt
instCanonicallyOrderedAdd
instOrderedSub
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
one_div
rpow_inv_le_iff
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
LT.lt.trans_le
rpow_natCast
LE.le.trans
LT.lt.le
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
addLeftMono
pow_right_monoβ‚€
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
IsOrderedRing.toPosMulMono
instIsOrderedRing

Real

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_const_rpow πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”ContinuousAt.comp
Continuous.continuousAt
Complex.continuous_re
continuousAt_const_cpow
Nat.cast_zero
Complex.continuous_ofReal
continuousAt_const_rpow' πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”ContinuousAt.comp
Continuous.continuousAt
Complex.continuous_re
continuousAt_const_cpow'
Nat.cast_zero
Complex.continuous_ofReal
continuousAt_rpow πŸ“–mathematicalReal
instLT
instZero
ContinuousAt
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”continuousAt_rpow_of_ne
continuousAt_rpow_of_pos
continuousAt_rpow_const πŸ“–mathematicalReal
instLE
instZero
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”le_iff_lt_or_eq
ContinuousAt.compβ‚‚
continuousAt_rpow
continuousAt_id
continuousAt_const
rpow_zero
continuousAt_rpow_of_ne πŸ“–mathematicalβ€”ContinuousAt
Real
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”ne_iff_lt_or_gt
continuousAt_congr
rpow_eq_nhds_of_neg
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousAt.comp
Continuous.continuousAt
continuous_exp
continuousAt_log
LT.lt.ne
continuous_fst
continuous_snd
ContinuousAt.comp'
continuous_cos
ContinuousAt.fun_mul
ContinuousAt.snd
continuousAt_id'
continuousAt_const
rpow_eq_nhds_of_pos
LT.lt.ne'
continuousAt_rpow_of_pos πŸ“–mathematicalReal
instLT
instZero
ContinuousAt
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”ne_or_eq
continuousAt_rpow_of_ne
Filter.Tendsto.comp
tendsto_exp_atBot
Filter.Tendsto.atBot_mul_pos
instIsStrictOrderedRing
instOrderTopologyReal
tendsto_log_nhdsNE_zero
Filter.tendsto_fst
Filter.tendsto_snd
squeeze_zero_norm
abs_rpow_le_exp_log_mul
nhdsWithin_singleton
Filter.tendsto_pure
Filter.pure_prod
Filter.eventually_map
Filter.Eventually.mono
lt_mem_nhds
zero_rpow
LT.lt.ne'
nhds_prod_eq
Set.compl_union_self
nhdsWithin_univ
Filter.Tendsto.sup
Filter.Tendsto.mono_right
pure_le_nhds
continuous_const_rpow πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”continuous_iff_continuousAt
continuousAt_const_rpow
continuous_rpow_const πŸ“–mathematicalReal
instLE
instZero
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
β€”continuous_iff_continuousAt
continuousAt_rpow_const
rpow_eq_nhds_of_neg πŸ“–mathematicalReal
instLT
instZero
Filter.EventuallyEq
nhds
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
instMul
exp
log
cos
pi
β€”IsOpen.eventually_mem
isOpen_lt
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
continuous_fst
continuous_const
Filter.Eventually.mono
rpow_def_of_neg
rpow_eq_nhds_of_pos πŸ“–mathematicalReal
instLT
instZero
Filter.EventuallyEq
nhds
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
exp
instMul
log
β€”IsOpen.eventually_mem
isOpen_lt
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
continuous_const
continuous_fst
Filter.Eventually.mono
rpow_def_of_pos

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_const_cpow πŸ“–mathematicalβ€”ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
β€”Complex.cpow_def_of_ne_zero
ContinuousAt.comp
Continuous.continuousAt
Complex.continuous_exp
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousAt_const
continuousAt_id
continuousAt_const_cpow' πŸ“–mathematicalβ€”ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
β€”continuousAt_congr
zero_cpow_eq_nhds
continuousAt_const
continuousAt_const_cpow
continuousAt_cpow πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.slitPlane
ContinuousAt
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
β€”continuousAt_congr
cpow_eq_nhds'
Complex.slitPlane_ne_zero
ContinuousAt.comp
Continuous.continuousAt
Complex.continuous_exp
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousAt_clog
continuous_fst
continuous_snd
continuousAt_cpow_const πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.slitPlane
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
β€”Filter.Tendsto.comp
continuousAt_cpow
ContinuousAt.prodMk
continuousAt_id
continuousAt_const
continuous_const_cpow πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
β€”Continuous.const_cpow
continuous_id
cpow_eq_nhds πŸ“–mathematicalβ€”Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
Complex.exp
Complex.instMul
Complex.log
β€”IsOpen.eventually_mem
isOpen_ne
T2Space.t1Space
Complex.instT2Space
Filter.Eventually.mono
Complex.cpow_def_of_ne_zero
cpow_eq_nhds' πŸ“–mathematicalβ€”Filter.EventuallyEq
Complex
nhds
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
Complex.exp
Complex.instMul
Complex.log
β€”IsOpen.eventually_mem
isOpen_compl_iff
isClosed_eq
Complex.instT2Space
continuous_fst
continuous_const
Filter.Eventually.mono
Complex.cpow_def_of_ne_zero
zero_cpow_eq_nhds πŸ“–mathematicalβ€”Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instPow
Complex.instZero
Pi.instZero
β€”IsOpen.eventually_mem
isOpen_ne
T2Space.t1Space
Complex.instT2Space
Filter.Eventually.mono
Complex.zero_cpow
Pi.zero_apply

---

← Back to Index