| Metric | Count |
DefinitionsinstPowReal, orderIsoRpow, rpow, evalNNRealRPow, proveIsNatNNRealRPowIsNNRat, evalENNRealRpow, evalNNRealRpow, instPowReal, orderIsoRpow, rpow, rpowMonoidHom | 11 |
Theoremsadd_rpow_le_two_rpow_mul_rpow_add_rpow, coe_mul_rpow, coe_rpow_def, coe_rpow_of_ne_zero, coe_rpow_of_nonneg, div_rpow_of_nonneg, inv_rpow, le_rpow_inv_iff, le_rpow_self_of_one_le, lt_rpow_inv_iff, max_rpow, monotone_rpow_of_nonneg, mul_rpow_eq_ite, mul_rpow_of_ne_top, mul_rpow_of_ne_zero, mul_rpow_of_nonneg, ofReal_rpow_of_nonneg, ofReal_rpow_of_pos, one_le_rpow, one_le_rpow_of_pos_of_le_one_of_neg, one_lt_rpow, one_lt_rpow_of_pos_of_lt_one_of_neg, one_rpow, orderIsoRpow_apply, orderIsoRpow_symm_apply, pow_rpow_inv_natCast, prod_coe_rpow, prod_rpow_of_ne_top, prod_rpow_of_nonneg, rpow_add, rpow_add_of_add_pos, rpow_add_of_nonneg, rpow_eq_pow, rpow_eq_top_iff, rpow_eq_top_iff_of_pos, rpow_eq_top_of_nonneg, rpow_eq_zero_iff, rpow_eq_zero_iff_of_pos, rpow_intCast, rpow_intCast_mul, rpow_inv_le_iff, rpow_inv_lt_iff, rpow_inv_natCast_pow, rpow_inv_rpow, rpow_le_one, rpow_le_one_of_one_le_of_neg, rpow_le_rpow, rpow_le_rpow_iff, rpow_le_rpow_of_exponent_ge, rpow_le_rpow_of_exponent_le, rpow_le_self_of_le_one, rpow_left_bijective, rpow_left_injective, rpow_left_surjective, rpow_lt_one, rpow_lt_one_of_one_lt_of_neg, rpow_lt_rpow, rpow_lt_rpow_iff, rpow_lt_rpow_of_exponent_gt, rpow_lt_rpow_of_exponent_lt, rpow_lt_top_iff_of_pos, rpow_lt_top_of_nonneg, rpow_mul, rpow_mul_intCast, rpow_mul_natCast, rpow_natCast, rpow_natCast_mul, rpow_ne_top_of_ne_zero, rpow_ne_top_of_nonneg, rpow_ne_top_of_nonneg', rpow_neg, rpow_neg_one, rpow_ofNNReal, rpow_ofNat, rpow_one, rpow_pos, rpow_pos_of_nonneg, rpow_rpow_inv, rpow_sub, rpow_two, rpow_zero, rpow_zero_pos, strictMono_rpow_of_pos, toNNReal_rpow, toReal_rpow, top_rpow_def, top_rpow_of_neg, top_rpow_of_pos, zero_rpow_def, zero_rpow_mul_self, zero_rpow_of_neg, zero_rpow_of_pos, nnreal_rpow_eq_inv_nnreal_pow, nnreal_rpow_isNNRat, nnreal_rpow_eq_nnreal_pow, nnreal_rpow_isNNRat, nnreal_rpow_isRat_eq_inv_nnreal_rpow, coe_rpow, div_rpow, eq_rpow_inv_iff, finset_prod_rpow, inv_rpow, le_rpow_inv_iff, le_rpow_inv_iff_of_neg, le_rpow_inv_iff_of_pos, list_prod_map_rpow, list_prod_map_rpow', lt_rpow_inv_iff, lt_rpow_inv_iff_of_neg, lt_rpow_inv_iff_of_pos, monotone_rpow_of_nonneg, mul_rpow, multiset_prod_map_rpow, one_le_rpow, one_le_rpow_of_pos_of_le_one_of_nonpos, one_lt_rpow, one_lt_rpow_of_pos_of_lt_one_of_neg, one_rpow, orderIsoRpow_apply, orderIsoRpow_symm_eq, pow_rpow_inv_natCast, rpowMonoidHom_apply, rpow_add, rpow_add', rpow_add_intCast, rpow_add_intCast', rpow_add_natCast, rpow_add_natCast', rpow_add_of_nonneg, rpow_add_one, rpow_add_one', rpow_eq_pow, rpow_eq_rpow_iff, rpow_eq_zero, rpow_eq_zero_iff, rpow_intCast, rpow_intCast_mul, rpow_inv_eq_iff, rpow_inv_le_iff, rpow_inv_le_iff_of_neg, rpow_inv_le_iff_of_pos, rpow_inv_lt_iff, rpow_inv_lt_iff_of_neg, rpow_inv_lt_iff_of_pos, rpow_inv_natCast_pow, rpow_inv_rpow, rpow_inv_rpow_self, rpow_le_one, rpow_le_one_of_one_le_of_nonpos, rpow_le_rpow, rpow_le_rpow_iff, rpow_le_rpow_iff_of_neg, rpow_le_rpow_of_exponent_ge, rpow_le_rpow_of_exponent_le, rpow_le_rpow_of_nonpos, rpow_le_self_of_le_one, rpow_left_bijective, rpow_left_injective, rpow_left_surjective, rpow_lt_one, rpow_lt_one_of_one_lt_of_neg, rpow_lt_rpow, rpow_lt_rpow_iff, rpow_lt_rpow_iff_of_neg, rpow_lt_rpow_of_exponent_gt, rpow_lt_rpow_of_exponent_lt, rpow_lt_rpow_of_neg, rpow_mul, rpow_mul_intCast, rpow_mul_natCast, rpow_natCast, rpow_natCast_mul, rpow_neg, rpow_neg_one, rpow_ofNat, rpow_of_add_eq, rpow_one, rpow_one_add', rpow_one_sub', rpow_pos, rpow_rpow_inv, rpow_self_rpow_inv, rpow_sub, rpow_sub', rpow_sub_intCast, rpow_sub_intCast', rpow_sub_natCast, rpow_sub_natCast', rpow_sub_one, rpow_sub_one', rpow_two, rpow_zero, rpow_zero_pos, sqrt_eq_rpow, strictMono_rpow_of_pos, zero_rpow, enorm_rpow_of_nonneg, finset_prod_rpow, list_prod_map_rpow, list_prod_map_rpow', multiset_prod_map_rpow, nnnorm_rpow_of_nonneg, toNNReal_rpow_of_nonneg | 203 |
| Total | 214 |
| Name | Category | Theorems |
instPowReal π | CompOp | 187 mathmath: PiLp.lipschitzWith_toLp, PiLp.nndist_eq_sum, rpow_sub_intCast, rpow_rpow_inv, rpowMonoidHom_apply, HolderOnWith.interpolate, zero_rpow, rpow_lt_one, HolderWith.of_le, HolderOnWith.comp, MeasureTheory.Lp.nnnorm_le_of_ae_bound, rpow_add_rpow_le_add, rpow_intCast_mul, pow_rpow_inv_natCast, WithLp.prod_nnnorm_eq_add, MeasureTheory.eLpNorm_smul_measure_of_ne_top', orderIsoRpow_apply, rpow_natCast, rpow_lt_rpow_iff_of_neg, sqrt_eq_rpow, rpow_mul_intCast, young_inequality, CFC.rpow_def, ENNReal.rpow_ofNNReal, rpow_inv_lt_iff_of_pos, CFC.rpow_algebraMap, eventually_pow_one_div_le, rpow_zero_pos, Mathlib.Meta.NormNum.IsNat.nnreal_rpow_isNNRat, rpow_lt_rpow_of_neg, HolderOnWith.nndist_le_of_le, coe_rpow, rpow_add_intCast', one_le_rpow, rpow_le_one_of_one_le_of_nonpos, HolderWith.holderWith_zero_of_bounded, rpow_lt_rpow, rpow_eq_pow, PiLp.nnnorm_toLp_one, arith_mean_le_rpow_mean, isGreatest_Lp, rpow_inv_rpow, MeasureTheory.lpNorm_smul_measure_of_ne_zero, rpow_sub_natCast, rpow_sub, rpow_sub', rpow_neg_one, rpow_le_rpow, rpow_sum_le_const_mul_sum_rpow, BoundedContinuousFunction.Lp_nnnorm_le, eq_rpow_inv_iff, rpow_le_rpow_of_exponent_ge, rpow_mul, PiLp.nnnorm_toLp_const', rpow_add_natCast', ENNReal.coe_rpow_of_nonneg, MeasureTheory.Measure.hausdorffMeasure_smulβ, rpow_lt_rpow_of_exponent_gt, rpow_lt_rpow_of_exponent_lt, FormalMultilinearSeries.radius_inv_eq_limsup, inv_rpow, continuousAt_rpow, rpow_ofNat, rpow_arith_mean_le_arith_mean_rpow, one_lt_rpow_of_pos_of_lt_one_of_neg, nnrpow_def, add_rpow_le_rpow_add, rpow_two, strictMono_rpow_of_pos, lt_rpow_inv_iff, rpow_natCast_mul, geom_mean_le_arith_mean4_weighted, ENNReal.coe_rpow_of_ne_zero, tendsto_rpow_atTop, rpow_inv_eq_iff, rpow_le_one, rpow_add_natCast, geom_mean_le_arith_mean2_weighted, WithLp.prod_nndist_eq_add, rpow_inv_le_iff_of_pos, MeasureTheory.eLpNormLESNormFDerivOneConst_def, rpow_le_self_of_le_one, rpow_lt_rpow_iff, list_prod_map_rpow', rpow_inv_le_iff, Mathlib.Meta.NormNum.IsNat.nnreal_rpow_eq_nnreal_pow, WithLp.prod_lipschitzWith_toLp, rpow_eq_zero, one_le_rpow_of_pos_of_le_one_of_nonpos, rpow_add', ENNReal.toNNReal_rpow, HolderOnWith.holderOnWith_zero_of_bounded, HolderWith.comp_holderOnWith, rpow_add, one_lt_rpow, le_rpow_inv_iff, MeasureTheory.hausdorffMeasure_homothety_image, rpow_inv_rpow_self, rpow_add_rpow_le, PiLp.antilipschitzWith_ofLp, rpow_sub_one, rpow_inv_le_iff_of_neg, rpow_one_sub', rpow_intCast, continuousOn_rpow_const, rpow_left_injective, MeasureTheory.nnnorm_indicatorConstLp_le, rpow_add_le_mul_rpow_add_rpow, rpow_le_rpow_of_nonpos, rpow_add_intCast, le_rpow_inv_iff_of_neg, rpow_eq_rpow_iff, continuousAt_rpow_const, lt_rpow_inv_iff_of_neg, rpow_add_one, rpow_lt_one_of_one_lt_of_neg, inner_le_weight_mul_Lp, rpow_add_one', lt_rpow_inv_iff_of_pos, rpow_le_rpow_iff_of_neg, geom_mean_le_arith_mean_weighted, CFC.nnnorm_rpow, nnnorm_fderiv_norm_rpow_le, ENNReal.coe_rpow_def, summable_one_div_rpow, rpow_neg, rpow_add_le_add_rpow, rpow_sub_one', rpow_sub_natCast', HolderOnWith.comp_holderWith, continuous_rpow_const, finset_prod_rpow, rpow_inv_lt_iff, summable_rpow_inv, rpow_eq_zero_iff, rpow_arith_mean_le_arith_mean2_rpow, monotone_rpow_of_nonneg, hasMeasurablePow, Lp_add_le, rpow_one_add', continuousOn_rpow_const_compl_zero, HolderOnWith.of_le, geom_mean_le_arith_mean3_weighted, rpow_zero, PiLp.nnnorm_eq_sum, one_rpow, rpow_le_rpow_of_exponent_le, Matrix.frobenius_nnnorm_def, Real.nnnorm_rpow_of_nonneg, HolderOnWith.nndist_le, rpow_mul_natCast, MeasureTheory.lpNorm_smul_measure_of_ne_top, div_rpow, rpow_inv_natCast_pow, rpow_add_of_nonneg, rpow_self_rpow_inv, rpow_one, Real.toNNReal_rpow_of_nonneg, rpow_left_surjective, rpow_of_add_eq, MeasureTheory.hausdorffMeasure_homothety_preimage, Filter.Tendsto.nnrpow, list_prod_map_rpow, PiLp.nnnorm_toLp_const, mul_rpow, MeasureTheory.eLpNorm_smul_measure_of_ne_zero', multiset_prod_map_rpow, rpow_le_rpow_iff, strictConcaveOn_rpow, le_rpow_inv_iff_of_pos, CFC.nnnorm_nnrpow, FormalMultilinearSeries.radius_eq_liminf, HolderWith.interpolate, HolderWith.nndist_le, young_inequality_real, Mathlib.Meta.NormNum.nnreal_rpow_isRat_eq_inv_nnreal_rpow, HolderWith.comp, inner_le_Lp_mul_Lq, rpow_inv_lt_iff_of_neg, rpow_sub_intCast', Mathlib.Meta.NormNum.IsInt.nnreal_rpow_eq_inv_nnreal_pow, rpow_pos, summable_rpow, concaveOn_rpow, WithLp.prod_antilipschitzWith_ofLp, HolderWith.nndist_le_of_le, rpow_left_bijective
|
orderIsoRpow π | CompOp | 2 mathmath: orderIsoRpow_apply, orderIsoRpow_symm_eq
|
rpow π | CompOp | 1 mathmath: rpow_eq_pow
|
rpowMonoidHom π | CompOp | 1 mathmath: rpowMonoidHom_apply
|