Documentation Verification Report

Real

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Pow/Real.lean

Statistics

MetricCount
DefinitionsevalRPow, proveIsNatRPowIsNNRat, evalRpow, evalRpowZero, instPow, rpow
6
Theoremsabs_cpow_inv_two_im, cpow_inv_two_im_eq_neg_sqrt, cpow_inv_two_im_eq_sqrt, cpow_inv_two_re, cpow_mul_ofReal_nonneg, cpow_ofReal, cpow_ofReal_im, cpow_ofReal_re, inv_natCast_cpow_ofReal_pos, norm_cpow_eq_rpow_re_of_nonneg, norm_cpow_eq_rpow_re_of_pos, norm_cpow_inv_nat, norm_cpow_le, norm_cpow_of_imp, norm_cpow_of_ne_zero, norm_cpow_real, norm_log_natCast_le_rpow_div, norm_natCast_cpow_le_norm_natCast_cpow_iff, norm_natCast_cpow_le_norm_natCast_cpow_of_pos, norm_natCast_cpow_of_pos, norm_natCast_cpow_of_re_ne_zero, norm_natCast_cpow_pos_of_pos, norm_ofReal_cpow_eventually_eq_atTop, norm_prime_cpow_le_one_half, ofReal_cpow, ofReal_cpow_of_nonpos, one_sub_prime_cpow_ne_zero, rpow_const, rpow_eq_inv_pow, rpow_isNNRat, rpow_eq_pow, rpow_isNNRat, isInt_rpow_neg, isInt_rpow_pos, isNNRat_rpow_neg, isNNRat_rpow_pos, isNat_rpow_neg, isNat_rpow_pos, isRat_rpow_neg, isRat_rpow_pos, rpow_isRat_eq_inv_rpow, abs_log_mul_self_rpow_lt, abs_rpow_le_abs_rpow, abs_rpow_le_exp_log_mul, abs_rpow_of_nonneg, antitoneOn_rpow_Ioi_of_exponent_nonpos, antitone_rpow_of_base_le_one, div_rpow, eq_rpow_inv, eq_zero_rpow_iff, exp_mul, exp_one_pow, exp_one_rpow, inv_rpow, le_log_of_pow_le, le_log_of_rpow_le, le_log_of_zpow_le, le_pow_iff_log_le, le_pow_of_log_le, le_rpow_add, le_rpow_iff_log_le, le_rpow_inv_iff_of_neg, le_rpow_inv_iff_of_pos, le_rpow_of_log_le, le_zpow_iff_log_le, le_zpow_of_log_le, log_le_rpow_div, log_natCast_le_rpow_div, log_rpow, lt_log_of_pow_lt, lt_log_of_rpow_lt, lt_log_of_zpow_lt, lt_pow_iff_log_lt, lt_pow_of_log_lt, lt_rpow_iff_log_lt, lt_rpow_inv_iff_of_neg, lt_rpow_inv_iff_of_pos, lt_rpow_of_log_lt, lt_zpow_iff_log_lt, lt_zpow_of_log_lt, monotoneOn_rpow_Ici_of_exponent_nonneg, monotone_rpow_of_base_ge_one, mul_log_eq_log_iff, mul_rpow, norm_rpow_of_nonneg, one_le_rpow, one_le_rpow_of_pos_of_le_one_of_nonpos, one_lt_rpow, one_lt_rpow_iff, one_lt_rpow_iff_of_pos, one_lt_rpow_of_pos_of_lt_one_of_neg, one_rpow, pi_rpow_zero, pow_le_iff_le_log, pow_le_of_le_log, pow_lt_iff_lt_log, pow_lt_of_lt_log, pow_rpow_inv_natCast, rpow_add, rpow_add', rpow_add_intCast, rpow_add_intCast', rpow_add_natCast, rpow_add_natCast', rpow_add_of_nonneg, rpow_add_one, rpow_add_one', rpow_def, rpow_def_of_neg, rpow_def_of_nonneg, rpow_def_of_nonpos, rpow_def_of_pos, rpow_div_two_eq_sqrt, rpow_eq_pow, rpow_eq_zero, rpow_eq_zero_iff_of_nonneg, rpow_intCast, rpow_intCast_mul, rpow_inv_eq, rpow_inv_le_iff_of_neg, rpow_inv_le_iff_of_pos, rpow_inv_log, rpow_inv_log_le_exp_one, rpow_inv_lt_iff_of_neg, rpow_inv_lt_iff_of_pos, rpow_inv_natCast_pow, rpow_inv_rpow, rpow_le_iff_le_log, rpow_le_of_le_log, rpow_le_one, rpow_le_one_iff_of_pos, rpow_le_one_of_one_le_of_nonpos, rpow_le_rpow, rpow_le_rpow_iff, rpow_le_rpow_iff_of_neg, rpow_le_rpow_left_iff, rpow_le_rpow_left_iff_of_base_lt_one, rpow_le_rpow_of_exponent_ge, rpow_le_rpow_of_exponent_ge', rpow_le_rpow_of_exponent_ge_of_imp, rpow_le_rpow_of_exponent_le, rpow_le_rpow_of_exponent_le_or_ge, rpow_le_rpow_of_exponent_nonpos, rpow_le_rpow_of_nonpos, rpow_le_self_of_le_one, rpow_le_self_of_one_le, rpow_left_inj, rpow_left_injOn, rpow_lt_iff_lt_log, rpow_lt_of_lt_log, rpow_lt_one, rpow_lt_one_iff, rpow_lt_one_iff', rpow_lt_one_iff_of_pos, rpow_lt_one_of_one_lt_of_neg, rpow_lt_rpow, rpow_lt_rpow_iff, rpow_lt_rpow_iff_of_neg, rpow_lt_rpow_left_iff, rpow_lt_rpow_left_iff_of_base_lt_one, rpow_lt_rpow_of_exponent_gt, rpow_lt_rpow_of_exponent_lt, rpow_lt_rpow_of_exponent_neg, rpow_lt_rpow_of_neg, rpow_lt_self_of_lt_one, rpow_lt_self_of_one_lt, rpow_max, rpow_mul, rpow_mul_intCast, rpow_mul_natCast, rpow_natCast, rpow_natCast_mul, rpow_ne_zero, rpow_neg, rpow_neg_eq_inv_rpow, rpow_neg_natCast, rpow_neg_ofNat, rpow_neg_one, rpow_nonneg, rpow_ofNat, rpow_of_add_eq, rpow_one, rpow_one_add', rpow_one_sub', rpow_pos_of_pos, rpow_pow_comm, rpow_right_inj, rpow_rpow_inv, rpow_sub, rpow_sub', rpow_sub_intCast, rpow_sub_intCast', rpow_sub_natCast, rpow_sub_natCast', rpow_sub_one, rpow_sub_one', rpow_sum_of_nonneg, rpow_sum_of_pos, rpow_two, rpow_zero, rpow_zero_pos, rpow_zpow_comm, self_le_rpow_of_le_one, self_le_rpow_of_one_le, self_lt_rpow_of_lt_one, self_lt_rpow_of_one_lt, sqrt_eq_rpow, strictAntiOn_rpow_Ioi_of_exponent_neg, strictAnti_rpow_of_base_lt_one, strictMonoOn_rpow_Ici_of_exponent_pos, strictMono_rpow_of_base_gt_one, zero_rpow, zero_rpow_eq_iff, zero_rpow_le_one, zero_rpow_nonneg, zpow_le_iff_le_log, zpow_le_of_le_log, zpow_lt_iff_lt_log, zpow_lt_of_lt_log
219
Total225

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
abs_cpow_inv_two_im πŸ“–mathematicalβ€”abs
Real
Real.lattice
Real.instAddGroup
im
Complex
instPow
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Norm.norm
instNorm
re
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
ofReal_ofNat
ofReal_inv
cpow_ofReal_im
div_eq_mul_inv
one_div
Real.sqrt_eq_rpow
abs_mul
Real.instIsOrderedRing
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sqrt_nonneg
Real.abs_sin_half
Real.sqrt_mul
norm_nonneg
mul_div_assoc
mul_sub
mul_one
norm_mul_cos_arg
cpow_inv_two_im_eq_neg_sqrt πŸ“–mathematicalReal
Real.instLT
im
Real.instZero
Complex
instPow
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Norm.norm
instNorm
re
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
ofReal_ofNat
ofReal_inv
cpow_ofReal_im
div_eq_mul_inv
one_div
Real.sqrt_eq_rpow
Real.sin_half_eq_neg_sqrt
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Real.pi_pos
neg_pi_lt_arg
LT.lt.le
arg_neg_iff
mul_neg
Real.sqrt_mul
norm_nonneg
mul_div_assoc
mul_sub
mul_one
norm_mul_cos_arg
cpow_inv_two_im_eq_sqrt πŸ“–mathematicalReal
Real.instLE
Real.instZero
im
Complex
instPow
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Norm.norm
instNorm
re
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
ofReal_ofNat
ofReal_inv
cpow_ofReal_im
div_eq_mul_inv
one_div
Real.sqrt_eq_rpow
Real.sin_half_eq_sqrt
arg_nonneg_iff
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Real.pi_pos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
arg_le_pi
Real.sqrt_mul
norm_nonneg
mul_div_assoc
mul_sub
mul_one
norm_mul_cos_arg
cpow_inv_two_re πŸ“–mathematicalβ€”re
Complex
instPow
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Norm.norm
instNorm
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
ofReal_ofNat
ofReal_inv
cpow_ofReal_re
div_eq_mul_inv
one_div
Real.sqrt_eq_rpow
Real.cos_half
LT.lt.le
neg_pi_lt_arg
arg_le_pi
Real.sqrt_mul
norm_nonneg
mul_div_assoc
mul_add
Distrib.leftDistribClass
mul_one
norm_mul_cos_arg
cpow_mul_ofReal_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
Complex
instPow
ofReal
instMul
Real.instPow
β€”cpow_mul
ofReal_log
ofReal_mul
ofReal_im
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.pi_pos
LT.lt.le
ofReal_cpow
cpow_ofReal πŸ“–mathematicalβ€”Complex
instPow
ofReal
instMul
Real
Real.instPow
Norm.norm
instNorm
instAdd
Real.cos
Real.instMul
arg
Real.sin
I
β€”eq_or_ne
norm_zero
ofReal_cpow
le_rfl
arg_zero
MulZeroClass.zero_mul
Real.cos_zero
Real.sin_zero
add_zero
mul_one
cpow_def_of_ne_zero
exp_eq_exp_re_mul_sin_add_cos
mul_comm
re_ofReal_mul
im_ofReal_mul
log_re
log_im
Real.exp_mul
Real.exp_log
norm_pos_iff
cpow_ofReal_im πŸ“–mathematicalβ€”im
Complex
instPow
ofReal
Real
Real.instMul
Real.instPow
Norm.norm
instNorm
Real.sin
arg
β€”cpow_ofReal
ofReal_cos
ofReal_sin_ofReal_re
cos_ofReal_im
mul_one
sin_ofReal_im
MulZeroClass.mul_zero
add_zero
zero_add
sub_self
MulZeroClass.zero_mul
cpow_ofReal_re πŸ“–mathematicalβ€”re
Complex
instPow
ofReal
Real
Real.instMul
Real.instPow
Norm.norm
instNorm
Real.cos
arg
β€”cpow_ofReal
ofReal_cos_ofReal_re
ofReal_sin
MulZeroClass.mul_zero
sin_ofReal_im
mul_one
sub_self
add_zero
cos_ofReal_im
zero_add
MulZeroClass.zero_mul
sub_zero
inv_natCast_cpow_ofReal_pos πŸ“–mathematicalβ€”Complex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
instInv
instPow
instNatCast
ofReal
β€”RCLike.inv_pos_of_pos
ofReal_cpow
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Mathlib.Meta.Positivity.ofReal_pos
Real.rpow_pos_of_pos
Nat.cast_pos'
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
norm_cpow_eq_rpow_re_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
Complex
instNorm
instPow
ofReal
Real.instPow
re
β€”norm_cpow_of_imp
instIsEmptyFalse
norm_real
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
arg_ofReal_of_nonneg
MulZeroClass.zero_mul
Real.exp_zero
div_one
norm_cpow_eq_rpow_re_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Norm.norm
Complex
instNorm
instPow
ofReal
Real.instPow
re
β€”norm_cpow_of_ne_zero
ofReal_ne_zero
LT.lt.ne'
arg_ofReal_of_nonneg
LT.lt.le
MulZeroClass.zero_mul
Real.exp_zero
div_one
norm_of_nonneg
norm_cpow_inv_nat πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instPow
instInv
instNatCast
Real
Real.instPow
Real.instInv
Real.instNatCast
β€”norm_cpow_real
ofReal_inv
norm_cpow_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
instNorm
instPow
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
re
Real.exp
Real.instMul
arg
im
β€”Eq.le
norm_cpow_of_imp
zero_cpow
norm_zero
Real.rpow_zero
arg_zero
MulZeroClass.zero_mul
Real.exp_zero
div_self
NeZero.charZero_one
RCLike.charZero_rclike
Real.instZeroLEOneClass
norm_cpow_of_imp πŸ“–mathematicalComplex
instZero
Norm.norm
instNorm
instPow
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
re
Real.exp
Real.instMul
arg
im
β€”ne_or_eq
norm_cpow_of_ne_zero
norm_zero
eq_or_ne
cpow_zero
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Real.rpow_zero
arg_zero
MulZeroClass.mul_zero
Real.exp_zero
div_self
NeZero.charZero_one
RCLike.charZero_rclike
Real.zero_rpow
zero_div
zero_cpow
norm_cpow_of_ne_zero πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instPow
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
re
Real.exp
Real.instMul
arg
im
β€”cpow_def_of_ne_zero
norm_exp
mul_re
log_re
log_im
Real.exp_sub
Real.rpow_def_of_pos
norm_pos_iff
norm_cpow_real πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instPow
ofReal
Real
Real.instPow
β€”norm_cpow_of_imp
MulZeroClass.mul_zero
Real.exp_zero
div_one
norm_log_natCast_le_rpow_div πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Complex
instNorm
log
instNatCast
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
Real.instNatCast
β€”Nat.cast_zero
log_zero
norm_zero
Real.zero_rpow
LT.lt.ne'
zero_div
le_refl
natCast_log
norm_real
Real.norm_of_nonneg
Real.log_nonneg
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
GT.gt.lt
Real.log_natCast_le_rpow_div
norm_natCast_cpow_le_norm_natCast_cpow_iff πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
instNorm
instPow
instNatCast
re
β€”norm_natCast_cpow_of_pos
Real.rpow_le_rpow_left_iff
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
norm_natCast_cpow_le_norm_natCast_cpow_of_pos πŸ“–mathematicalReal
Real.instLE
re
Norm.norm
Complex
instNorm
instPow
instNatCast
β€”norm_natCast_cpow_of_pos
Real.rpow_le_rpow_of_exponent_le
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
norm_natCast_cpow_of_pos πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instPow
instNatCast
Real
Real.instPow
Real.instNatCast
re
β€”ofReal_natCast
norm_cpow_eq_rpow_re_of_pos
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
norm_natCast_cpow_of_re_ne_zero πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instPow
instNatCast
Real
Real.instPow
Real.instNatCast
re
β€”ofReal_natCast
norm_cpow_eq_rpow_re_of_nonneg
Nat.cast_nonneg
Real.instIsOrderedRing
norm_natCast_cpow_pos_of_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Norm.norm
Complex
instNorm
instPow
instNatCast
β€”Real.rpow_pos_of_pos
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
norm_natCast_cpow_of_pos
norm_ofReal_cpow_eventually_eq_atTop πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
Norm.norm
Complex
instNorm
instPow
ofReal
Real.instPow
re
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
norm_cpow_eq_rpow_re_of_pos
norm_prime_cpow_le_one_half πŸ“–mathematicalReal
Real.instLT
Real.instOne
re
Real.instLE
Norm.norm
Complex
instNorm
instPow
instNatCast
Nat.Prime
instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
norm_natCast_cpow_of_re_ne_zero
neg_re
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
LE.le.trans
Real.rpow_le_rpow_of_nonpos
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Nat.cast_le
Nat.Prime.two_le
Subtype.prop
le_of_not_gt
one_div
Real.rpow_neg_one
Real.rpow_le_rpow_of_exponent_le
one_le_two
LT.lt.le
neg_lt_neg
ofReal_cpow πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Real.instPow
Complex
instPow
β€”Real.rpow_def_of_nonneg
ofReal_exp
ofReal_mul
ofReal_log
ofReal_cpow_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
Complex
instPow
ofReal
instMul
instNeg
exp
Real.pi
I
β€”LE.le.eq_or_lt
eq_or_ne
cpow_zero
neg_zero
MulZeroClass.mul_zero
exp_zero
mul_one
zero_cpow
MulZeroClass.zero_mul
ofReal_ne_zero
LT.lt.ne
cpow_def_of_ne_zero
neg_ne_zero
exp_add
add_mul
Distrib.rightDistribClass
log.eq_1
norm_neg
arg_ofReal_of_neg
ofReal_neg
arg_ofReal_of_nonneg
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ofReal_zero
add_zero
one_sub_prime_cpow_ne_zero πŸ“–β€”Nat.Prime
Real
Real.instLT
Real.instOne
re
β€”β€”sub_ne_zero_of_ne
Nat.instAtLeastTwoHAddOfNat
norm_prime_cpow_le_one_half
Mathlib.Meta.NormNum.isRat_le_false
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toNontrivial
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
rpow_const πŸ“–mathematicalHasCompactSupport
Real
Real.instZero
Real.instPowβ€”comp_left
Real.zero_rpow

Mathlib.Meta.NormNum

Definitions

NameCategoryTheorems
evalRPow πŸ“–CompOpβ€”
proveIsNatRPowIsNNRat πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isInt_rpow_neg πŸ“–mathematicalIsInt
Real
Real.instRing
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instPowβ€”IsInt.out
Real.rpow_intCast
isInt_rpow_pos πŸ“–mathematicalIsNat
Real
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
IsInt
Monoid.toNatPow
Real.instMonoid
Real.instPowβ€”IsNat.out
Real.rpow_natCast
isNNRat_rpow_neg πŸ“–mathematicalIsInt
Real
Real.instRing
IsNNRat
Real.semiring
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instPowβ€”IsInt.out
Real.rpow_intCast
isNNRat_rpow_pos πŸ“–mathematicalIsNat
Real
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
IsNNRat
Real.semiring
Monoid.toNatPow
Real.instMonoid
Real.instPowβ€”IsNat.out
Real.rpow_natCast
isNat_rpow_neg πŸ“–mathematicalIsInt
Real
Real.instRing
IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instPowβ€”IsInt.out
Real.rpow_intCast
isNat_rpow_pos πŸ“–mathematicalIsNat
Real
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Monoid.toNatPow
Real.instMonoid
Real.instPowβ€”IsNat.out
Real.rpow_natCast
isRat_rpow_neg πŸ“–mathematicalIsInt
Real
Real.instRing
IsRat
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instPowβ€”IsInt.out
Real.rpow_intCast
isRat_rpow_pos πŸ“–mathematicalIsNat
Real
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
IsRat
Monoid.toNatPow
Real.instMonoid
Real.instPowβ€”IsNat.out
Real.rpow_natCast
rpow_isRat_eq_inv_rpow πŸ“–mathematicalIsRat
Real
Real.instRing
Real.instPow
Real.instInv
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”Real.rpow_neg_eq_inv_rpow
IsRat.neg_to_eq

Mathlib.Meta.NormNum.IsInt

Theorems

NameKindAssumesProvesValidatesDepends On
rpow_eq_inv_pow πŸ“–mathematicalMathlib.Meta.NormNum.IsInt
Real
Real.instRing
Real.instPow
Real.instInv
Monoid.toNatPow
Real.instMonoid
β€”out
Real.rpow_intCast
zpow_neg
zpow_natCast

Mathlib.Meta.NormNum.IsNNRat

Theorems

NameKindAssumesProvesValidatesDepends On
rpow_isNNRat πŸ“–β€”Mathlib.Meta.NormNum.IsNNRat
Real
Real.semiring
Mathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Real.instPow
Real.instNatCast
β€”β€”of_raw
Mathlib.Meta.NormNum.IsNat.out
LT.lt.ne'
Real.rpow_pos_of_pos
lt_of_le_of_ne'
Nat.cast_nonneg
Real.instIsOrderedRing
den_nz
to_eq
Real.div_rpow

Mathlib.Meta.NormNum.IsNat

Theorems

NameKindAssumesProvesValidatesDepends On
rpow_eq_pow πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
Real
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Real.instPow
Monoid.toNatPow
Real.instMonoid
β€”out
Real.rpow_natCast
rpow_isNNRat πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
Real
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Mathlib.Meta.NormNum.IsNNRat
Real.semiring
Monoid.toNatPow
Nat.instMonoid
Real.instPowβ€”Nat.cast_zero
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsNNRat.to_eq
div_eq_mul_inv
Real.rpow_natCast_mul
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Nat.cast_pow
Real.pow_rpow_inv_natCast
ne_of_gt
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalRpow πŸ“–CompOpβ€”
evalRpowZero πŸ“–CompOpβ€”

Real

Definitions

NameCategoryTheorems
instPow πŸ“–CompOp
666 mathmath: ENNReal.ofReal_rpow_of_pos, CuspFormClass.qExpansion_isBigO, rpow_eq_pow, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', PiLp.norm_toLp_const', rpow_add_of_nonneg, ContinuousOn.rpow, ContinuousWithinAt.rpow_const, HasDerivAt.const_rpow, hasMeasurablePow, Asymptotics.IsBigO.rpow_rpow_nhdsGE_zero_of_le, MeasureTheory.norm_indicatorConstLp_le, ProbabilityTheory.gammaPDF_of_nonneg, logb_le_iff_le_rpow, HasStrictDerivAt.rpow, ContDiffOn.rpow_const_of_le, rpow_lt_one_iff_of_pos, ProbabilityTheory.betaPDF_eq, rpow_add_natCast', AkraBazziRecurrence.tendsto_zero_sumCoeffsExp, rpow_eq_nhds_of_neg, Complex.isTheta_cpow_rpow, isLittleO_exp_neg_mul_sq_cocompact, young_inequality, CFC.tendsto_cfc_rpow_sub_one_log, one_le_rpow_of_pos_of_le_one_of_nonpos, rpow_le_self_of_one_le, hasStrictDerivAt_rpow_const_of_ne, monotone_rpow_of_base_ge_one, Asymptotics.IsLittleO.rpow, strictConcaveOn_rpow, PiLp.norm_toLp_one, rpow_pos_of_pos, exp_mul, inv_rpow, Metric.Snowflaking.preimage_ofSnowflaking_closedBall, MeasureTheory.integral_mul_norm_le_Lp_mul_Lq, tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero, EisensteinSeries.summand_bound_of_mem_verticalStrip, lt_rpow_inv_iff_of_pos, MeasureTheory.norm_indicatorConstLp, continuous_rpow_const, AkraBazziRecurrence.tendsto_atTop_sumCoeffsExp, ContDiffPointwiseHolderAt.isBigO, rpow_neg_one, rpow_zpow_comm, Complex.cpow_mul_ofReal_nonneg, rpow_eq_const_mul_integral, ProbabilityTheory.integrable_rpow_mul_cexp_of_re_mem_interior_integrableExpSet, summable_one_div_nat_add_rpow, logb_le_iff_le_rpow_of_base_lt_one, isLittleO_log_rpow_rpow_atTop, Differentiable.fderiv_norm_rpow, MeasureTheory.MemLp.integrable_norm_rpow', rpow_def_of_pos, AkraBazziRecurrence.isTheta_deriv_rpow_p_mul_one_sub_smoothingFn, MeasureTheory.MemLp.norm_rpow, lp.sum_rpow_le_norm_rpow, setOf_liouvilleWith_subset_aux, lp.norm_sum_single, contDiffAt_rpow_const_of_le, hasStrictFDerivAt_rpow_of_pos, rpow_sum_le_const_mul_sum_rpow_of_nonneg, WeakFEPair.hf_zero', integral_exp_neg_mul_rpow, Mathlib.Meta.NormNum.rpow_isRat_eq_inv_rpow, summable_nat_rpow_inv, integrableOn_Ioi_rpow_of_lt, list_prod_map_rpow', ContinuousMap.toLp_norm_le, WeakFEPair.h_feq, Complex.integral_rpow_mul_exp_neg_rpow, integral_Ioi_rpow_of_lt, Complex.volume_sum_rpow_le, ContDiffOn.rpow, rpow_inv_log, enorm_fderiv_norm_rpow_le, lp.sum_rpow_le_of_tendsto, le_logb_iff_rpow_le, rpow_mul_intCast, setIntegral_Ioi_zero_rpow, integral_rpow_mul_exp_neg_rpow, logb_lt_iff_lt_rpow, GammaIntegral_convergent, MeasureTheory.measure_lt_one_eq_integral_div_gamma, one_add_rpow_hasFPowerSeriesOnBall_zero, Mathlib.Meta.NormNum.isRat_rpow_pos, Chebyshev.psi_eq_sum_theta, MeasureTheory.integrable_norm_rpow_iff, MeasureTheory.MemLp.exists_boundedContinuous_integral_rpow_sub_le, self_le_rpow_of_le_one, logb_eq_iff_rpow_eq, WithLp.prod_norm_eq_of_nat, rpowIntegrand₀₁_le_rpow_sub_two_mul_self, lp.norm_rpow_eq_tsum, integrable_one_add_norm, Gamma_mul_Gamma_add_half, integrableOn_add_rpow_Ioi_of_lt, NNReal.coe_rpow, harm_mean_le_geom_mean_weighted, DifferentiableOn.rpow, ZLattice.tsum_norm_rpow_le, DifferentiableAt.rpow_const, differentiableAt_rpow_const_of_ne, summable_abs_int_rpow, multiset_prod_map_rpow, ProbabilityTheory.integrable_rpow_abs_mul_cexp_of_re_mem_interior_integrableExpSet, PeriodPair.weierstrassP_bound, deriv_norm_ofReal_cpow, Complex.ofReal_cpow, tendsto_rpow_atTop, deriv_rpow_const, convexOn_rpow_left, tendsto_smoothingFun_comp, AkraBazziRecurrence.sumTransform_def, rpow_lt_rpow_of_neg, Mathlib.Meta.NormNum.isNNRat_rpow_pos, continuousAt_rpow_const, log_rpow, tsum_exp_neg_mul_int_sq, Asymptotics.IsBigOWith.rpow, rpow_mul_natCast, rpow_sub', LSeries.summable_real_of_abscissaOfAbsConv_lt, Continuous.rpow, finite_integral_rpow_sub_one_pow_aux, Complex.GammaIntegral_ofReal, Complex.norm_cpow_of_ne_zero, memβ„“p_gen_iff, Complex.norm_ofReal_cpow_eventually_eq_atTop, differentiableOn_rpow_const, Complex.integral_exp_neg_rpow, harm_mean_le_geom_mean, continuousAt_rpow_of_pos, MeasureTheory.integral_comp_rpow_Ioi_of_pos, rpow_eq_zero_iff_of_nonneg, ProbabilityTheory.integrable_rpow_abs_mul_exp_of_mem_interior_integrableExpSet, continuousAt_const_rpow', ZLattice.tsumNormRPowBound_spec, ContDiffOn.rpow_const_of_ne, Complex.norm_cpow_of_imp, rpow_lt_rpow_left_iff, HasDerivWithinAt.const_rpow, hasFDerivAt_norm_rpow, MeasureTheory.lintegral_rpow_eq_lintegral_meas_le_mul, intervalIntegral.integrableOn_Ioo_rpow_iff, concaveOn_rpow, mul_rpow, rpow_le_rpow_of_nonpos, MeasureTheory.volume_sum_rpow_lt, hasDerivAt_abs_rpow, logb_rpow_eq_mul_logb_of_pos, ZetaAsymptotics.term_tsum_of_lt, Rat.AbsoluteValue.exists_nat_rpow_iff_isEquiv, rpow_arith_mean_le_arith_mean_rpow, Rat.AbsoluteValue.equiv_on_nat_iff_equiv, ContDiff.norm_rpow, MeasureTheory.Measure.HasTemperateGrowth.exists_integrable, ENNReal.ofReal_rpow_of_nonneg, integrable_rpow_neg_one_add_norm_sq, rpow_zero, Complex.cpow_ofReal_re, le_rpow_add, Chebyshev.sum_PrimePow_eq_sum_sum, StrongFEPair.hf_zero', differentiableAt_rpow_of_ne, Metric.Snowflaking.image_ofSnowflaking_ball, rpow_lt_rpow_of_exponent_neg, ProbabilityTheory.integrable_rpow_abs_mul_exp_of_integrable_exp_mul, le_rpow_inv_iff_of_neg, log_le_rpow_div, LSeriesSummable.le_const_mul_rpow, intervalIntegral.intervalIntegrable_rpow, AkraBazziRecurrence.eventually_deriv_rpow_p_mul_one_sub_smoothingFn, ContDiffAt.rpow, Complex.norm_cpow_real, tendsto_rpow_atTop_of_base_gt_one, Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma, isLittleO_exp_mul_rpow_of_lt, rpow_eq_zero, Complex.isBigO_cpow_rpow, rpowIntegrand₀₁_apply_mul_eqOn_Ici, ProbabilityTheory.betaPDF_of_pos_lt_one, Complex.HadamardThreeLines.norm_invInterpStrip, MeasureTheory.lintegral_rpow_eq_lintegral_meas_lt_mul, exp_one_rpow, WithLp.prod_norm_eq_add, strictAntiOn_rpow_Ioi_of_exponent_neg, MeasureTheory.Lp.norm_const_le, MeasureTheory.volume_sum_rpow_le, geom_mean_eq_arith_mean_weighted_iff', integral_rpow_mul_exp_neg_mul_rpow, ProbabilityTheory.paretoPDF_of_le, HasStrictFDerivAt.rpow, rpow_def_of_neg, le_rpow_one_add_norm_iff_norm_le, Matrix.frobenius_norm_def, RingSeminorm.exists_index_pow_le, Behrend.bound, PiLp.norm_eq_sum, inner_le_weight_mul_Lp_of_nonneg, WeakFEPair.h_feq', rpow_sum_le_const_mul_sum_rpow, AkraBazziRecurrence.asympBound_def, Mathlib.Meta.NormNum.isNat_rpow_neg, tendsto_rpow_div_mul_add, rpow_sum_of_pos, tendsto_rpow_atTop_of_base_lt_one, NumberField.house.exists_ne_zero_int_vec_house_le, WithLp.prod_norm_eq_add_idemFst, norm_inv_mul_rpow_sub_one_sub_log_le, Metric.Snowflaking.preimage_toSnowflaking_closedBall, strictMono_rpow_of_base_gt_one, isLittleO_rpow_exp_pos_mul_atTop, one_rpow, AkraBazziRecurrence.eventually_deriv_rpow_p_mul_one_add_smoothingFn, contDiffPointwiseHolderAt_iff, Mathlib.Meta.NormNum.IsNat.rpow_isNNRat, HasDerivWithinAt.rpow, MeasureTheory.Lp.norm_const', AkraBazziRecurrence.p_def, ContDiffAt.rpow_const_of_ne, monotoneOn_rpow_Ici_of_exponent_nonneg, RingSeminorm.isBoundedUnder, not_integrableOn_Ioi_rpow, tendsto_rpow_sub_one_log, ZLattice.summable_norm_rpow, arith_mean_le_rpow_mean, NumberField.mixedEmbedding.fundamentalCone.expMap_smul, continuous_const_rpow, rpow_logb_eq_abs, Filter.Tendsto.rpow_const, one_lt_rpow_iff_of_pos, hasStrictDerivAt_const_rpow_of_neg, AkraBazziRecurrence.isTheta_deriv_rpow_p_mul_one_add_smoothingFn, MeasureTheory.MemLp.integrable_norm_rpow, isLittleO_log_rpow_nhdsGT_zero, abs_rpow_of_nonneg, Mathlib.Meta.NormNum.isRat_rpow_neg, AkraBazziRecurrence.strictAnti_sumCoeffsExp, isLittleO_log_rpow_atTop, le_rpow_iff_log_le, div_rpow, isLittleO_exp_neg_mul_rpow_atTop, tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact, rpow_lt_one, derivWithin_const_rpow, norm_fderiv_norm_rpow_le, smoothingFun_le, deriv_rpow_const, geom_mean_le_arith_mean4_weighted, ContDiff.rpow, zero_rpow_eq_iff, Differentiable.norm_rpow, eq_zero_rpow_iff, logb_lt_iff_lt_rpow_of_base_lt_one, LSeries.norm_term_eq, antitone_rpow_of_base_le_one, MeasureTheory.lpNorm_nnreal_eq_integral_norm_rpow, derivWithin_rpow_const, Complex.integral_exp_neg_mul_rpow, le_rpow_inv_iff_of_pos, pow_rpow_inv_natCast, MeasureTheory.MemLp.eLpNorm_eq_integral_rpow_norm, rpow_one_add', rpow_le_rpow_of_exponent_ge', abs_rpow_le_abs_rpow, HurwitzZeta.oddKernel_functional_equation, MeasureTheory.MemLp.exists_hasCompactSupport_integral_rpow_sub_le, finite_integral_one_add_norm, WeakFEPair.hg_top, isLittleO_abs_log_rpow_rpow_nhdsGT_zero, ContinuousAt.rpow, EisensteinSeries.summable_one_div_norm_rpow, rpow_le_rpow_left_iff, hasDerivAt_rpow_const, rpow_logb, rpow_lt_rpow_iff_of_neg, zero_rpow, rpowIntegrand₀₁_apply_mul, rpow_one, BoundedContinuousFunction.Lp_norm_le, MeasureTheory.Lp.norm_constL_le, isTheta_deriv_rpow_const_atTop, rpow_left_inj, Complex.volume_sum_rpow_lt, lp.norm_compl_sum_single, MeasureTheory.integral_comp_rpow_Ioi, integrable_rpow_mul_exp_neg_mul_sq, SchwartzMap.integral_pow_mul_iteratedFDeriv_le, integral_exp_neg_rpow, WeakFEPair.hf_zero, HasCompactSupport.rpow_const, rpow_neg_eq_inv_rpow, rpow_add_one, lt_rpow_inv_iff_of_neg, WithLp.prod_dist_eq_add, one_div_one_sub_rpow_hasFPowerSeriesOnBall_zero, add_rpow_le_rpow_add, continuousAt_rpow_of_ne, MeasureTheory.Lp.norm_const, lt_logb_iff_rpow_lt, tendsto_log_div_rpow_nhdsGT_zero, geom_mean_le_arith_mean3_weighted, ZetaAsymptotics.zeta_limit_aux1, rpow_intCast_mul, ContDiffWithinAt.rpow, list_prod_map_rpow, rpow_inv_le_iff_of_neg, Chebyshev.psi_eq_theta_add_sum_theta, rpow_lt_one_of_one_lt_of_neg, rpow_mul_exp_neg_mul_sq_isLittleO_exp_neg, summable_one_div_nat_rpow, rpow_sub_one, LiouvilleWith.frequently_lt_rpow_neg, AkraBazziRecurrence.asympBound_def', ProbabilityTheory.integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul, Tactic.ComputeAsymptotics.Majorized.self, HasDerivAt.rpow, Complex.norm_natCast_cpow_of_pos, isLittleO_rpow_exp_atTop, tendsto_rpow_neg_nhdsGT_zero, Filter.Tendsto.rpow, HasFDerivWithinAt.rpow_const, one_le_rpow, cexp_neg_quadratic_isLittleO_abs_rpow_cocompact, Rat.AbsoluteValue.exists_pos_eq_pow_neg, integrableOn_Ioi_rpow_iff, ZetaAsymptotics.term_sum_of_lt, deriv_const_rpow, ContDiffAt.rpow_const_of_le, MeasureTheory.Lp.norm_le_of_ae_bound, rpowIntegrand₀₁_eq_pow_div, contDiffAt_rpow_const, Metric.Snowflaking.preimage_ofSnowflaking_ball, integrableOn_rpow_mul_exp_neg_rpow, rpow_sub_one', ContDiff.rpow_const_of_le, rpow_lt_rpow, rpow_two, ProbabilityTheory.paretoPDF_eq, DifferentiableAt.rpow, rpow_logb_of_neg, Lp_add_le, integral_rpow, Lp_add_le_of_nonneg, rpow_add', Mathlib.Meta.NormNum.IsInt.rpow_eq_inv_pow, MeasureTheory.MemLp.norm_rpow_div, strictConvexOn_rpow, rpow_le_rpow_left_iff_of_base_lt_one, rpow_inv_log_le_exp_one, ContDiff.rpow_const_of_ne, HasFDerivAt.rpow_const, geom_mean_lt_arith_mean_weighted_iff_of_pos, HasStrictFDerivAt.const_rpow, pow_mul_le_of_le_of_pow_mul_le, CuspFormClass.exists_bound, Gamma_eq_integral, ProbabilityTheory.integrable_rpow_abs_of_integrable_exp_mul, abs_log_mul_self_rpow_lt, rpow_left_injOn, mellin_comp_rpow, rpow_sub_intCast', MeasureTheory.memLp_norm_rpow_iff, rpow_sum_of_nonneg, Mathlib.Meta.NormNum.isNNRat_rpow_neg, tendstoLocallyUniformlyOn_rpow_sub_one_log, lp.hasSum_norm, self_lt_rpow_of_lt_one, MeasureTheory.eLpNorm_norm_rpow, rpow_le_self_of_le_one, tendsto_rpow_atBot_of_base_lt_one, one_lt_rpow_of_pos_of_lt_one_of_neg, LiouvilleWith.exists_pos, rpow_add_rpow_le_add, PiLp.norm_eq_of_nat, MellinConvergent.comp_rpow, PiLp.norm_toLp_const, ProbabilityTheory.integrable_rpow_mul_exp_of_integrable_exp_mul, nnnorm_fderiv_norm_rpow_le, ProbabilityTheory.integrable_rpow_abs_of_mem_interior_integrableExpSet, Complex.isTheta_cpow_const_rpow, Metric.Snowflaking.preimage_toSnowflaking_ball, rpow_inv_natCast_pow, Gamma_mul_Gamma_add_half_of_pos, rpow_def_of_nonneg, ZLattice.summable_norm_sub_rpow, one_add_rpow_hasFPowerSeriesAt_zero, MeasureTheory.lpNorm_one, ArithmeticFunction.vonMangoldt.LSeries_residueClass_lower_bound, spectralNorm.spectralNorm_eq_norm_coeff_zero_rpow, ContinuousAt.rpow_const, not_differentiableAt_rpow_const_zero, rpow_le_iff_le_log, exp_neg_mul_rpow_isLittleO_exp_neg, mellin_convergent_iff_norm, DifferentiableWithinAt.rpow_const, tendsto_rpow_div, HasFDerivWithinAt.rpow, AkraBazziRecurrence.isEquivalent_deriv_rpow_p_mul_one_add_smoothingFn, geom_mean_eq_arith_mean_weighted_iff, one_add_rpow_hasFPowerSeriesAt_zero, rpow_sub_natCast', geom_mean_le_arith_mean, lp.norm_sub_norm_compl_sub_single, rpow_le_of_le_log, rpow_le_one, rpow_lt_one_iff, Asymptotics.IsBigO.rpow_rpow_nhdsGE_zero_of_le_of_imp, WeakFEPair.hf_modif_FE, rpow_add_rpow_le, HasDerivWithinAt.rpow_const, ProbabilityTheory.gammaPDF_eq, spectrum.pow_norm_pow_one_div_tendsto_nhds_spectralRadius, isBigO_deriv_ofReal_cpow_const_atTop, ContDiffWithinAt.rpow_const_of_ne, hasDerivAt_norm_rpow, ProbabilityTheory.rpow_abs_le_mul_max_exp, tendsto_rpow_neg_div, zero_mem_lowerBounds_smoothingSeminormSeq_range, tendsto_rpow_neg_atTop, rexp_neg_quadratic_isLittleO_rpow_atTop, HasFDerivAt.const_rpow, rpow_inv_lt_iff_of_neg, ContDiffWithinAt.rpow_const_of_le, continuousAt_const_rpow, Asymptotics.IsTheta.rpow, enorm_rpow_of_nonneg, LSeriesSummable.isBigO_rpow, cexp_neg_quadratic_isLittleO_rpow_atTop, smoothingSeminormSeq_bddBelow, Complex.cpow_ofReal_im, tendsto_sub_mul_tsum_nat_rpow, contDiff_rpow_const_of_le, rpow_lt_iff_lt_log, ProbabilityTheory.lintegral_betaPDF, rpow_le_rpow, BoundedContinuousFunction.toLp_norm_le, Metric.Snowflaking.image_toSnowflaking_closedBall, mul_log_eq_log_iff, ProbabilityTheory.rpow_abs_le_mul_exp_abs, strictAnti_rpow_of_base_lt_one, tendsto_one_add_rpow_exp_of_tendsto, rpow_neg_one_add_norm_sq_le, contDiffAt_rpow_const_of_ne, rpow_ofNat, Mathlib.Meta.NormNum.isInt_rpow_pos, rpow_add, Nat.Primes.summable_rpow, isBigO_deriv_rpow_const_atTop, deriv_rpow_const', MeasureTheory.integral_mul_le_Lp_mul_Lq_of_nonneg, HasDerivAt.rpow_const, DifferentiableOn.rpow_const, inner_le_Lp_mul_Lq, iter_deriv_rpow_const, rpow_add_le_add_rpow, Complex.norm_cpow_inv_nat, rpow_one_sub', ProbabilityTheory.rpow_abs_le_mul_max_exp_of_pos, Complex.integral_rpow_mul_exp_neg_mul_rpow, rpow_sub_natCast, rpow_inv_eq, MeasureTheory.Measure.HasTemperateGrowth.exists_eLpNorm_lt_top, integral_pow_mul_le_of_le_of_pow_mul_le, CFC.nnrpow_eq_cfcβ‚™_real, rpow_eq_nhds_of_pos, ENNReal.toReal_rpow, Asymptotics.IsBigO.rpow, continuousAt_rpow, rpow_one_add_lt_one_add_mul_self, closedBall_rpow_sub_one_eq_empty_aux, StrongFEPair.hf_top', rpow_le_rpow_of_exponent_nonpos, integral_rpow_mul_exp_neg_mul_Ioi, rpow_le_one_of_one_le_of_nonpos, rpow_le_rpow_iff, rpow_max, differentiable_norm_rpow, rpow_add_natCast, log_natCast_le_rpow_div, Memβ„“p.summable, tendsto_exp_div_rpow_atTop, Gamma_integrand_isLittleO, rpow_nonneg, Complex.norm_cpow_eq_rpow_re_of_nonneg, NumberField.abs_discr_rpow_ge_of_isTotallyComplex, CFC.norm_rpow, self_lt_rpow_of_one_lt, rpow_pow_comm, intervalIntegral.intervalIntegrable_rpow', HolderOnWith.dist_le, HasFDerivWithinAt.const_rpow, ZetaAsymptotics.term_welldef, geom_mean_eq_arith_mean_weighted_of_constant, rpow_div_two_eq_sqrt, young_inequality_of_nonneg, antitoneOn_rpow_Ioi_of_exponent_nonpos, Metric.Snowflaking.dist_ofSnowflaking_ofSnowflaking, lp.norm_eq_tsum_rpow, WeakFEPair.f_modif_aux1, geom_mean_weighted_of_constant, Asymptotics.IsBigO.id_rpow_of_le_one, HolderWith.dist_le_of_le, Metric.Snowflaking.image_ofSnowflaking_closedBall, HurwitzZeta.evenKernel_functional_equation, Complex.norm_log_natCast_le_rpow_div, Complex.HadamardThreeLines.norm_le_interp_of_mem_verticalClosedStrip', integrableOn_rpow_mul_exp_neg_mul_sq, AbsoluteValue.isEquiv_iff_exists_rpow_eq, CFC.cfcβ‚™_rpowIntegrand₀₁_eq_cfcβ‚™_rpowIntegrand₀₁_one, nnnorm_rpow_of_nonneg, AkraBazziRecurrence.growsPolynomially_rpow, Bertrand.real_main_inequality, MeasureTheory.lpNorm_eq_integral_norm_rpow_toReal, rpow_lt_self_of_one_lt, Complex.volume_sum_rpow_lt_one, rpow_le_rpow_iff_of_neg, rpow_def_of_nonpos, rpow_le_rpow_of_exponent_ge, ContinuousOn.rpow_const, Mathlib.Meta.NormNum.IsNat.rpow_eq_pow, MeasureTheory.norm_indicatorConstLp', AkraBazziRecurrence.one_mem_range_sumCoeffsExp, AkraBazziRecurrence.growsPolynomially_deriv_rpow_p_mul_one_sub_smoothingFn, rpow_sub_intCast, Continuous.rpow_const, rpow_le_one_iff_of_pos, norm_rpow_of_nonneg, abs_rpow_le_exp_log_mul, rpow_sub, rpow_le_rpow_of_exponent_ge_of_imp, contDiff_norm_rpow, rpow_inv_lt_iff_of_pos, HolderWith.dist_le, fderiv_norm_rpow, MeasureTheory.lpNorm_one', isTheta_deriv_ofReal_cpow_const_atTop, hasStrictDerivAt_const_rpow, ProbabilityTheory.integrable_rpow_of_integrable_exp_mul, rpowIntegrand₀₁_le_rpow_sub_one, rpow_lt_rpow_iff, rpow_mul, AkraBazziRecurrence.continuous_sumCoeffsExp, integral_mul_rpow_one_add_sq, rpow_of_add_eq, differentiable_rpow_const, rpow_add_intCast, lt_logb_iff_rpow_lt_of_base_lt_one, Complex.norm_cpow_le, MeasureTheory.lpNorm_const, rpow_rpow_inv, ProbabilityTheory.integrable_rpow_of_mem_interior_integrableExpSet, one_add_mul_self_lt_rpow_one_add, rpow_lt_rpow_of_exponent_gt, compact_inner_le_weight_mul_Lp_of_nonneg, toNNReal_rpow_of_nonneg, Differentiable.rpow_const, le_logb_iff_rpow_le_of_base_lt_one, hasStrictFDerivAt_rpow_of_neg, hasStrictDerivAt_rpow_const, integral_rpowIntegrand₀₁_eq_rpow_mul_const, lt_rpow_of_log_lt, rpow_neg_natCast, Metric.Snowflaking.image_toSnowflaking_ball, one_lt_rpow, rpowIntegrand₀₁_apply_mul', Asymptotics.IsEquivalent.rpow, strictMonoOn_rpow_Ici_of_exponent_pos, MeasureTheory.integrableOn_Ioi_comp_rpow_iff, rpow_right_inj, spectralValueTerms_of_lt_natDegree, finset_prod_rpow, ZLattice.sum_piFinset_Icc_rpow_le, tendsto_log_mul_rpow_nhdsGT_zero, rpow_inv_le_iff_of_pos, AkraBazziRecurrence.injective_sumCoeffsExp, pi_rpow_zero, MeasureTheory.eLpNorm'_norm_rpow, ContinuousWithinAt.rpow, MeasureTheory.measure_unitBall_eq_integral_div_gamma, ZetaAsymptotics.term_of_lt, AkraBazziRecurrence.growsPolynomially_deriv_rpow_p_mul_one_add_smoothingFn, Complex.norm_cpow_eq_rpow_re_of_pos, log_div_self_rpow_antitoneOn, rpow_inv_rpow, rpow_neg, Function.hasTemperateGrowth_one_add_norm_sq_rpow, rpow_add_intCast', AkraBazziRecurrence.sumCoeffsExp_p_eq_one, rpow_intCast, rpow_one_add_le_one_add_mul_self, DifferentiableWithinAt.rpow, self_le_rpow_of_one_le, Differentiable.rpow, logb_rpow, norm_fderiv_norm_id_rpow, rpow_le_rpow_of_exponent_le_or_ge, rpowIntegrand₀₁_one_ge_rpow_sub_two, ContDiffPointwiseHolderAt.zero_order_iff, MeasureTheory.lpNorm_const', tendsto_one_add_div_rpow_exp, rpow_add_one', rpow_lt_self_of_lt_one, exists_measure_rpow_eq_integral, Mathlib.Meta.NormNum.isNat_rpow_pos, EisensteinSeries.summand_bound, Complex.HadamardThreeLines.norm_le_interp_of_mem_verticalClosedStrip₀₁', tendsto_exp_mul_div_rpow_atTop, sqrt_eq_rpow, contDiffAt_rpow_of_ne, Metric.Snowflaking.dist_toSnowflaking_toSnowflaking, CFC.norm_nnrpow, one_add_rpow_hasFPowerSeriesOnBall_zero, rpow_def, summable_nat_rpow, one_add_mul_self_le_rpow_one_add, MeasureTheory.L2.eLpNorm_rpow_two_norm_lt_top, rpowIntegrand₀₁_eqOn_mul_rpowIntegrand₀₁_one, HasFDerivAt.rpow, rpow_natCast, zero_rpow_nonneg, inner_le_Lp_mul_Lq_of_nonneg, MeasureTheory.volume_sum_rpow_lt_one, Mathlib.Meta.NormNum.isInt_rpow_neg, rpow_natCast_mul, lt_rpow_iff_log_lt, convexOn_rpow, summable_one_div_int_add_rpow, rpow_zero_pos, Complex.norm_natCast_cpow_of_re_ne_zero, Int.Matrix.exists_ne_zero_int_vec_norm_le, AkraBazziRecurrence.isEquivalent_deriv_rpow_p_mul_one_sub_smoothingFn, WeakFEPair.hf_top, PiLp.dist_eq_sum, AkraBazziRecurrence.GrowsPolynomially.rpow, SchwartzMap.isBigO_cocompact_rpow, le_rpow_of_log_le, MeasureTheory.integrableOn_Ioi_comp_rpow_iff', geom_mean_le_arith_mean2_weighted, integrableAtFilter_rpow_atTop_iff, CFC.rpow_eq_cfc_real, rpow_le_rpow_of_exponent_le, rpowIntegrand₀₁_eqOn_pow_div, rpow_neg_ofNat, Complex.cpow_ofReal, rpow_lt_of_lt_log, one_lt_rpow_iff, HolderOnWith.dist_le_of_le, ZLattice.exists_finsetSum_norm_rpow_le_tsum, MeasureTheory.Measure.integrable_pow_neg_integrablePower, zero_rpow_le_one, GaussianFourier.integral_rexp_neg_mul_sq_norm, integrableOn_rpow_mul_exp_neg_mul_rpow, rpow_lt_rpow_left_iff_of_base_lt_one, Int.Matrix.exists_ne_zero_int_vec_norm_le', HasStrictFDerivAt.rpow_const, eq_rpow_inv, tendsto_rpow_atBot_of_base_gt_one, Rat.AbsoluteValue.le_pow_log, rpow_mul_exp_neg_mul_rpow_isLittleO_exp_neg, geom_mean_le_arith_mean_weighted, rpow_lt_one_iff', rpow_lt_rpow_of_exponent_lt, ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet
rpow πŸ“–CompOp
1 mathmath: rpow_eq_pow

Theorems

NameKindAssumesProvesValidatesDepends On
abs_log_mul_self_rpow_lt πŸ“–mathematicalReal
instLT
instZero
instLE
instOne
abs
lattice
instAddGroup
instMul
log
instPow
DivInvMonoid.toDiv
instDivInvMonoid
β€”lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
abs_log_mul_self_lt
rpow_pos_of_pos
rpow_le_one
LT.lt.le
mul_comm
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
abs_mul
instIsOrderedRing
mul_assoc
log_rpow
abs_rpow_le_abs_rpow πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
instPow
β€”le_or_gt
abs_rpow_of_nonneg
le_refl
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_def_of_neg
rpow_def_of_pos
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
log_neg_eq_log
abs_mul
instIsOrderedRing
abs_of_pos
exp_pos
mul_le_of_le_one_right
IsOrderedRing.toPosMulMono
LT.lt.le
abs_cos_le_one
abs_rpow_le_exp_log_mul πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
instPow
exp
instMul
log
β€”LE.le.trans
abs_rpow_le_abs_rpow
abs_zero
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_zero
log_zero
MulZeroClass.mul_zero
exp_zero
zero_rpow
MulZeroClass.zero_mul
instZeroLEOneClass
rpow_def_of_pos
abs_pos
log_abs
le_refl
abs_rpow_of_nonneg πŸ“–mathematicalReal
instLE
instZero
abs
lattice
instAddGroup
instPow
β€”rpow_nonneg
abs_eq_self
instIsOrderedAddMonoid
antitoneOn_rpow_Ioi_of_exponent_nonpos πŸ“–mathematicalReal
instLE
instZero
AntitoneOn
instPreorder
instPow
Set.Ioi
β€”rpow_le_rpow_of_nonpos
antitone_rpow_of_base_le_one πŸ“–mathematicalReal
instLT
instZero
instLE
instOne
Antitone
instPreorder
instPow
β€”lt_or_eq_of_le
StrictAnti.antitone
strictAnti_rpow_of_base_lt_one
one_rpow
div_rpow πŸ“–mathematicalReal
instLE
instZero
instPow
DivInvMonoid.toDiv
instDivInvMonoid
β€”div_eq_mul_inv
mul_rpow
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
inv_rpow
eq_rpow_inv πŸ“–mathematicalReal
instLE
instZero
instPow
instInv
β€”rpow_nonneg
rpow_inv_rpow
eq_zero_rpow_iff πŸ“–mathematicalβ€”Real
instPow
instZero
instOne
β€”zero_rpow_eq_iff
exp_mul πŸ“–mathematicalβ€”exp
Real
instMul
instPow
β€”rpow_def_of_pos
exp_pos
log_exp
exp_one_pow πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
exp
instOne
instNatCast
β€”rpow_natCast
exp_one_rpow
exp_one_rpow πŸ“–mathematicalβ€”Real
instPow
exp
instOne
β€”exp_mul
one_mul
inv_rpow πŸ“–mathematicalReal
instLE
instZero
instPow
instInv
β€”rpow_neg_eq_inv_rpow
rpow_neg
le_log_of_pow_le πŸ“–mathematicalReal
instLT
instZero
instLE
Monoid.toNatPow
instMonoid
instMul
instNatCast
log
β€”le_log_of_rpow_le
rpow_natCast
le_log_of_rpow_le πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
instMul
log
β€”log_le_log
rpow_pos_of_pos
log_rpow
le_log_of_zpow_le πŸ“–mathematicalReal
instLT
instZero
instLE
DivInvMonoid.toZPow
instDivInvMonoid
instMul
instIntCast
log
β€”le_log_of_rpow_le
rpow_intCast
le_pow_iff_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
Monoid.toNatPow
instMonoid
log
instMul
instNatCast
β€”le_rpow_iff_log_le
rpow_natCast
le_pow_of_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
log
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”le_rpow_of_log_le
rpow_natCast
le_rpow_add πŸ“–mathematicalReal
instLE
instZero
instMul
instPow
instAdd
β€”le_iff_eq_or_lt
rpow_zero
mul_le_mul
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedRing.toMulPosMono
zero_rpow_le_one
zero_rpow_nonneg
zero_le_one
instZeroLEOneClass
mul_one
rpow_add'
rpow_add
le_rpow_iff_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
log
instMul
β€”log_le_log_iff
rpow_pos_of_pos
log_rpow
le_rpow_inv_iff_of_neg πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
instInv
β€”rpow_le_rpow_iff_of_neg
rpow_pos_of_pos
rpow_inv_rpow
le_of_lt
LT.lt.ne
le_rpow_inv_iff_of_pos πŸ“–mathematicalReal
instLE
instZero
instLT
instPow
instInv
β€”rpow_le_rpow_iff
rpow_nonneg
rpow_inv_rpow
ne_of_gt
le_rpow_of_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
log
instMul
instPowβ€”le_or_gt
LE.le.trans
LT.lt.le
rpow_pos_of_pos
le_rpow_iff_log_le
le_zpow_iff_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
DivInvMonoid.toZPow
instDivInvMonoid
log
instMul
instIntCast
β€”le_rpow_iff_log_le
rpow_intCast
le_zpow_of_log_le πŸ“–mathematicalReal
instLT
instZero
instLE
log
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”le_rpow_of_log_le
rpow_intCast
log_le_rpow_div πŸ“–mathematicalReal
instLE
instZero
instLT
log
DivInvMonoid.toDiv
instDivInvMonoid
instPow
β€”LE.le.eq_or_lt
log_zero
zero_rpow
LT.lt.ne'
zero_div
le_refl
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Eq.trans_le
log_rpow
LE.le.trans
log_le_sub_one_of_pos
rpow_pos_of_pos
LT.lt.le
sub_one_lt
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
log_natCast_le_rpow_div πŸ“–mathematicalReal
instLT
instZero
instLE
log
instNatCast
DivInvMonoid.toDiv
instDivInvMonoid
instPow
β€”log_le_rpow_div
Nat.cast_nonneg
instIsOrderedRing
log_rpow πŸ“–mathematicalReal
instLT
instZero
log
instPow
instMul
β€”exp_injective
exp_log
rpow_pos_of_pos
mul_comm
rpow_def_of_pos
exp_pos
lt_log_of_pow_lt πŸ“–mathematicalReal
instLT
instZero
Monoid.toNatPow
instMonoid
instMul
instNatCast
log
β€”lt_log_of_rpow_lt
rpow_natCast
lt_log_of_rpow_lt πŸ“–mathematicalReal
instLT
instZero
instPow
instMul
log
β€”log_lt_log
rpow_pos_of_pos
log_rpow
lt_log_of_zpow_lt πŸ“–mathematicalReal
instLT
instZero
DivInvMonoid.toZPow
instDivInvMonoid
instMul
instIntCast
log
β€”lt_log_of_rpow_lt
rpow_intCast
lt_pow_iff_log_lt πŸ“–mathematicalReal
instLT
instZero
Monoid.toNatPow
instMonoid
log
instMul
instNatCast
β€”lt_rpow_iff_log_lt
rpow_natCast
lt_pow_of_log_lt πŸ“–mathematicalReal
instLT
instZero
log
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”lt_rpow_of_log_lt
rpow_natCast
lt_rpow_iff_log_lt πŸ“–mathematicalReal
instLT
instZero
instPow
log
instMul
β€”log_lt_log_iff
rpow_pos_of_pos
log_rpow
lt_rpow_inv_iff_of_neg πŸ“–mathematicalReal
instLT
instZero
instPow
instInv
β€”rpow_lt_rpow_iff_of_neg
rpow_pos_of_pos
rpow_inv_rpow
le_of_lt
LT.lt.ne
lt_rpow_inv_iff_of_pos πŸ“–mathematicalReal
instLE
instZero
instLT
instPow
instInv
β€”lt_iff_lt_of_le_iff_le
rpow_inv_le_iff_of_pos
lt_rpow_of_log_lt πŸ“–mathematicalReal
instLT
instZero
log
instMul
instPowβ€”le_or_gt
LE.le.trans_lt
rpow_pos_of_pos
lt_rpow_iff_log_lt
lt_zpow_iff_log_lt πŸ“–mathematicalReal
instLT
instZero
DivInvMonoid.toZPow
instDivInvMonoid
log
instMul
instIntCast
β€”lt_rpow_iff_log_lt
rpow_intCast
lt_zpow_of_log_lt πŸ“–mathematicalReal
instLT
instZero
log
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”lt_rpow_of_log_lt
rpow_intCast
monotoneOn_rpow_Ici_of_exponent_nonneg πŸ“–mathematicalReal
instLE
instZero
MonotoneOn
instPreorder
instPow
Set.Ici
β€”rpow_le_rpow
monotone_rpow_of_base_ge_one πŸ“–mathematicalReal
instLE
instOne
Monotone
instPreorder
instPow
β€”lt_or_eq_of_le
StrictMono.monotone
strictMono_rpow_of_base_gt_one
one_rpow
mul_log_eq_log_iff πŸ“–mathematicalReal
instLT
instZero
instMul
log
instPow
β€”log_injOn_pos
rpow_pos_of_pos
log_rpow
mul_rpow πŸ“–mathematicalReal
instLE
instZero
instPow
instMul
β€”rpow_def_of_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
rpow_zero
mul_one
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
log_mul
add_mul
Distrib.rightDistribClass
exp_add
rpow_def_of_pos
LE.le.lt_of_ne'
norm_rpow_of_nonneg πŸ“–mathematicalReal
instLE
instZero
Norm.norm
norm
instPow
β€”abs_rpow_of_nonneg
one_le_rpow πŸ“–mathematicalReal
instLE
instOne
instZero
instPowβ€”one_rpow
rpow_le_rpow
zero_le_one
instZeroLEOneClass
one_le_rpow_of_pos_of_le_one_of_nonpos πŸ“–mathematicalReal
instLT
instZero
instLE
instOne
instPowβ€”rpow_zero
rpow_le_rpow_of_exponent_ge
one_lt_rpow πŸ“–mathematicalReal
instLT
instOne
instZero
instPowβ€”one_rpow
rpow_lt_rpow
zero_le_one
instZeroLEOneClass
one_lt_rpow_iff πŸ“–mathematicalReal
instLE
instZero
instLT
instOne
instPow
β€”LE.le.eq_or_lt
em
rpow_zero
LT.lt.not_gt
zero_lt_one'
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
zero_rpow
one_lt_rpow_iff_of_pos
one_lt_rpow_iff_of_pos πŸ“–mathematicalReal
instLT
instZero
instOne
instPow
β€”rpow_def_of_pos
one_lt_exp_iff
mul_pos_iff
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
log_pos_iff
LT.lt.le
log_neg_iff
one_lt_rpow_of_pos_of_lt_one_of_neg πŸ“–mathematicalReal
instLT
instZero
instOne
instPowβ€”rpow_zero
rpow_lt_rpow_of_exponent_gt
one_rpow πŸ“–mathematicalβ€”Real
instPow
instOne
β€”Complex.one_cpow
pi_rpow_zero πŸ“–mathematicalβ€”Real
Pi.instPow
instPow
instZero
Pi.instOne
instOne
β€”rpow_zero
pow_le_iff_le_log πŸ“–mathematicalReal
instLT
instZero
instLE
Monoid.toNatPow
instMonoid
instMul
instNatCast
log
β€”rpow_le_iff_le_log
rpow_natCast
pow_le_of_le_log πŸ“–mathematicalReal
instLT
instZero
instLE
log
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”rpow_le_of_le_log
rpow_natCast
pow_lt_iff_lt_log πŸ“–mathematicalReal
instLT
instZero
Monoid.toNatPow
instMonoid
instMul
instNatCast
log
β€”rpow_lt_iff_lt_log
rpow_natCast
pow_lt_of_lt_log πŸ“–mathematicalReal
instLT
instZero
log
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”rpow_lt_of_lt_log
rpow_natCast
pow_rpow_inv_natCast πŸ“–mathematicalReal
instLE
instZero
instPow
Monoid.toNatPow
instMonoid
instInv
instNatCast
β€”Nat.cast_ne_zero
RCLike.charZero_rclike
rpow_natCast
rpow_mul
mul_inv_cancelβ‚€
rpow_one
rpow_add πŸ“–mathematicalReal
instLT
instZero
instPow
instAdd
instMul
β€”rpow_def_of_pos
mul_add
Distrib.leftDistribClass
exp_add
rpow_add' πŸ“–mathematicalReal
instLE
instZero
instPow
instAdd
instMul
β€”LE.le.eq_or_lt
zero_rpow
zero_eq_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
not_and_or
zero_add
rpow_add
rpow_add_intCast πŸ“–mathematicalβ€”Real
instPow
instAdd
instIntCast
instMul
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_def
Complex.ofReal_add
Complex.cpow_add
Complex.ofReal_ne_zero
Complex.ofReal_intCast
Complex.cpow_intCast
Complex.ofReal_zpow
mul_comm
Complex.re_ofReal_mul
rpow_add_intCast' πŸ“–mathematicalReal
instLE
instZero
instPow
instAdd
instIntCast
instMul
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_add'
rpow_intCast
rpow_add_natCast πŸ“–mathematicalβ€”Real
instPow
instAdd
instNatCast
instMul
Monoid.toNatPow
instMonoid
β€”Int.cast_natCast
zpow_natCast
rpow_add_intCast
rpow_add_natCast' πŸ“–mathematicalReal
instLE
instZero
instPow
instAdd
instNatCast
instMul
Monoid.toNatPow
instMonoid
β€”rpow_add'
rpow_natCast
rpow_add_of_nonneg πŸ“–mathematicalReal
instLE
instZero
instPow
instAdd
instMul
β€”LE.le.eq_or_lt
zero_add
rpow_zero
one_mul
rpow_add'
ne_of_gt
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_add_one πŸ“–mathematicalβ€”Real
instPow
instAdd
instOne
instMul
β€”Nat.cast_one
pow_one
rpow_add_natCast
rpow_add_one' πŸ“–mathematicalReal
instLE
instZero
instPow
instAdd
instOne
instMul
β€”rpow_add'
rpow_one
rpow_def πŸ“–mathematicalβ€”Real
instPow
Complex.re
Complex
Complex.instPow
Complex.ofReal
β€”β€”
rpow_def_of_neg πŸ“–mathematicalReal
instLT
instZero
instPow
instMul
exp
log
cos
pi
β€”rpow_def
Complex.cpow_def
Complex.ofReal_eq_zero
ne_of_lt
Complex.norm_real
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
log_neg_eq_log
Complex.arg_ofReal_of_neg
Complex.ofReal_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Complex.exp_add_mul_I
Complex.ofReal_exp
Complex.ofReal_cos
Complex.ofReal_sin
mul_add
Distrib.leftDistribClass
mul_assoc
Complex.add_re
Complex.ofReal_re
Complex.mul_re
Complex.I_re
Complex.ofReal_im
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
rpow_def_of_nonneg πŸ“–mathematicalReal
instLE
instZero
instPow
decidableEq
instOne
exp
instMul
log
β€”Complex.ofReal_log
Complex.ofReal_mul
rpow_def_of_nonpos πŸ“–mathematicalReal
instLE
instZero
instPow
decidableEq
instOne
instMul
exp
log
cos
pi
β€”Complex.cpow_zero
Complex.zero_cpow
rpow_def_of_neg
lt_of_le_of_ne
rpow_def_of_pos πŸ“–mathematicalReal
instLT
instZero
instPow
exp
instMul
log
β€”rpow_def_of_nonneg
le_of_lt
ne_of_gt
rpow_div_two_eq_sqrt πŸ“–mathematicalReal
instLE
instZero
instPow
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
sqrt_eq_rpow
rpow_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Nat.cast_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
rpow_eq_pow πŸ“–mathematicalβ€”rpow
Real
instPow
β€”β€”
rpow_eq_zero πŸ“–mathematicalReal
instLE
instZero
instPowβ€”β€”
rpow_eq_zero_iff_of_nonneg πŸ“–mathematicalReal
instLE
instZero
instPowβ€”rpow_def_of_nonneg
NeZero.charZero_one
RCLike.charZero_rclike
rpow_intCast πŸ“–mathematicalβ€”Real
instPow
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”Complex.cpow_intCast
rpow_intCast_mul πŸ“–mathematicalReal
instLE
instZero
instPow
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_mul
rpow_intCast
rpow_inv_eq πŸ“–mathematicalReal
instLE
instZero
instPow
instInv
β€”rpow_nonneg
rpow_inv_rpow
rpow_inv_le_iff_of_neg πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
instInv
β€”rpow_le_rpow_iff_of_neg
rpow_pos_of_pos
rpow_inv_rpow
le_of_lt
LT.lt.ne
rpow_inv_le_iff_of_pos πŸ“–mathematicalReal
instLE
instZero
instLT
instPow
instInv
β€”rpow_le_rpow_iff
rpow_nonneg
rpow_inv_rpow
ne_of_gt
rpow_inv_log πŸ“–mathematicalReal
instLT
instZero
instPow
instInv
log
exp
instOne
β€”rpow_def_of_pos
mul_inv_cancelβ‚€
log_ne_zero
LT.lt.ne'
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
rpow_inv_log_le_exp_one πŸ“–mathematicalβ€”Real
instLE
instPow
instInv
log
exp
instOne
β€”le_abs_self
abs_rpow_le_abs_rpow
log_abs
LE.le.eq_or_lt'
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
log_zero
inv_zero
rpow_zero
instZeroLEOneClass
rpow_def_of_pos
exp_monotone
mul_inv_le_one
rpow_inv_lt_iff_of_neg πŸ“–mathematicalReal
instLT
instZero
instPow
instInv
β€”rpow_lt_rpow_iff_of_neg
rpow_pos_of_pos
rpow_inv_rpow
le_of_lt
LT.lt.ne
rpow_inv_lt_iff_of_pos πŸ“–mathematicalReal
instLE
instZero
instLT
instPow
instInv
β€”lt_iff_lt_of_le_iff_le
le_rpow_inv_iff_of_pos
rpow_inv_natCast_pow πŸ“–mathematicalReal
instLE
instZero
Monoid.toNatPow
instMonoid
instPow
instInv
instNatCast
β€”Nat.cast_ne_zero
RCLike.charZero_rclike
rpow_natCast
rpow_mul
inv_mul_cancelβ‚€
rpow_one
rpow_inv_rpow πŸ“–mathematicalReal
instLE
instZero
instPow
instInv
β€”rpow_mul
inv_mul_cancelβ‚€
rpow_one
rpow_le_iff_le_log πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
instMul
log
β€”log_le_log_iff
rpow_pos_of_pos
log_rpow
rpow_le_of_le_log πŸ“–mathematicalReal
instLT
instZero
instLE
log
instMul
instPowβ€”le_or_gt
LE.le.trans
LT.lt.le
rpow_pos_of_pos
le_rpow_iff_log_le
rpow_le_one πŸ“–mathematicalReal
instLE
instZero
instOne
instPowβ€”one_rpow
rpow_le_rpow
rpow_le_one_iff_of_pos πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
instOne
β€”rpow_def_of_pos
exp_le_one_iff
mul_nonpos_iff
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
IsStrictOrderedRing.toPosMulStrictMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
log_nonneg_iff
log_nonpos_iff
LT.lt.le
rpow_le_one_of_one_le_of_nonpos πŸ“–mathematicalReal
instLE
instOne
instZero
instPowβ€”rpow_zero
rpow_le_rpow_of_exponent_le
rpow_le_rpow πŸ“–mathematicalReal
instLE
instZero
instPowβ€”eq_or_lt_of_le
le_refl
rpow_zero
le_of_lt
rpow_lt_rpow
rpow_le_rpow_iff πŸ“–mathematicalReal
instLE
instZero
instLT
instPowβ€”le_iff_le_iff_lt_iff_lt
rpow_lt_rpow_iff
rpow_le_rpow_iff_of_neg πŸ“–mathematicalReal
instLT
instZero
instLE
instPow
β€”le_iff_le_iff_lt_iff_lt
rpow_lt_rpow_iff_of_neg
rpow_le_rpow_left_iff πŸ“–mathematicalReal
instLT
instOne
instLE
instPow
β€”lt_trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
log_le_log_iff
rpow_pos_of_pos
log_rpow
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
log_pos
rpow_le_rpow_left_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
instPow
β€”log_le_log_iff
rpow_pos_of_pos
log_rpow
mul_le_mul_right_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
log_neg
rpow_le_rpow_of_exponent_ge πŸ“–mathematicalReal
instLT
instZero
instLE
instOne
instPowβ€”rpow_def_of_pos
exp_le_exp
mul_le_mul_of_nonpos_left
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
log_nonpos
le_of_lt
rpow_le_rpow_of_exponent_ge' πŸ“–mathematicalReal
instLE
instZero
instOne
instPowβ€”rpow_le_rpow_of_exponent_ge_of_imp
le_antisymm
LE.le.trans_eq
rpow_le_rpow_of_exponent_ge_of_imp πŸ“–mathematicalReal
instLE
instZero
instOne
instPowβ€”eq_or_lt_of_le
eq_or_ne
le_refl
zero_rpow
zero_rpow_nonneg
rpow_le_rpow_of_exponent_ge
rpow_le_rpow_of_exponent_le πŸ“–mathematicalReal
instLE
instOne
instPowβ€”rpow_def_of_pos
lt_of_lt_of_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
exp_le_exp
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
instIsOrderedRing
log_nonneg
rpow_le_rpow_of_exponent_le_or_ge πŸ“–mathematicalReal
instLE
instOne
instLT
instZero
instPowβ€”rpow_le_rpow_of_exponent_le
rpow_le_rpow_of_exponent_ge
rpow_le_rpow_of_exponent_nonpos πŸ“–mathematicalReal
instLT
instZero
instLE
instPowβ€”rpow_le_rpow_of_nonpos
rpow_le_rpow_of_nonpos πŸ“–mathematicalReal
instLT
instZero
instLE
instPowβ€”LT.lt.trans_le
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
rpow_pos_of_pos
rpow_neg
le_of_lt
rpow_le_rpow
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_le_self_of_le_one πŸ“–mathematicalReal
instLE
instZero
instOne
instPowβ€”rpow_one
rpow_le_rpow_of_exponent_ge_of_imp
LT.lt.ne'
LT.lt.trans_le
one_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
rpow_le_self_of_one_le πŸ“–mathematicalReal
instLE
instOne
instPowβ€”rpow_one
rpow_le_rpow_of_exponent_le
rpow_left_inj πŸ“–mathematicalReal
instLE
instZero
instPowβ€”Set.InjOn.eq_iff
rpow_left_injOn
rpow_left_injOn πŸ“–mathematicalβ€”Set.InjOn
Real
instPow
setOf
instLE
instZero
β€”rpow_one
mul_inv_cancelβ‚€
rpow_mul
rpow_lt_iff_lt_log πŸ“–mathematicalReal
instLT
instZero
instPow
instMul
log
β€”log_lt_log_iff
rpow_pos_of_pos
log_rpow
rpow_lt_of_lt_log πŸ“–mathematicalReal
instLT
instZero
log
instMul
instPowβ€”le_or_gt
LE.le.trans_lt
rpow_pos_of_pos
lt_rpow_iff_log_lt
rpow_lt_one πŸ“–mathematicalReal
instLE
instZero
instLT
instOne
instPowβ€”one_rpow
rpow_lt_rpow
rpow_lt_one_iff πŸ“–mathematicalReal
instLE
instZero
instLT
instPow
instOne
β€”LE.le.eq_or_lt
em
rpow_zero
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
zero_rpow
rpow_lt_one_iff_of_pos
LT.lt.ne
rpow_lt_one_iff' πŸ“–mathematicalReal
instLE
instZero
instLT
instPow
instOne
β€”rpow_lt_rpow_iff
zero_le_one
instZeroLEOneClass
one_rpow
rpow_lt_one_iff_of_pos πŸ“–mathematicalReal
instLT
instZero
instPow
instOne
β€”rpow_def_of_pos
exp_lt_one_iff
mul_neg_iff
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
log_pos_iff
LT.lt.le
log_neg_iff
rpow_lt_one_of_one_lt_of_neg πŸ“–mathematicalReal
instLT
instOne
instZero
instPowβ€”rpow_zero
rpow_lt_rpow_of_exponent_lt
rpow_lt_rpow πŸ“–mathematicalReal
instLE
instZero
instLT
instPowβ€”le_iff_eq_or_lt
zero_rpow
ne_of_gt
rpow_pos_of_pos
rpow_def_of_pos
lt_trans
exp_lt_exp
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
log_lt_log
rpow_lt_rpow_iff πŸ“–mathematicalReal
instLE
instZero
instLT
instPowβ€”lt_imp_lt_of_le_imp_le
rpow_le_rpow
le_of_lt
rpow_lt_rpow
rpow_lt_rpow_iff_of_neg πŸ“–mathematicalReal
instLT
instZero
instPowβ€”lt_imp_lt_of_le_imp_le
rpow_le_rpow_of_nonpos
LT.lt.le
rpow_lt_rpow_of_neg
rpow_lt_rpow_left_iff πŸ“–mathematicalReal
instLT
instOne
instPowβ€”lt_iff_not_ge
rpow_le_rpow_left_iff
rpow_lt_rpow_left_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instPowβ€”lt_iff_not_ge
rpow_le_rpow_left_iff_of_base_lt_one
rpow_lt_rpow_of_exponent_gt πŸ“–mathematicalReal
instLT
instZero
instOne
instPowβ€”rpow_def_of_pos
exp_lt_exp
mul_lt_mul_of_neg_left
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
log_neg
rpow_lt_rpow_of_exponent_lt πŸ“–mathematicalReal
instLT
instOne
instPowβ€”rpow_def_of_pos
lt_trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
exp_lt_exp
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
log_pos
rpow_lt_rpow_of_exponent_neg πŸ“–mathematicalReal
instLT
instZero
instPowβ€”rpow_lt_rpow_of_neg
rpow_lt_rpow_of_neg πŸ“–mathematicalReal
instLT
instZero
instPowβ€”LT.lt.trans
inv_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
rpow_pos_of_pos
rpow_neg
le_of_lt
rpow_lt_rpow
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_lt_self_of_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instPowβ€”rpow_one
rpow_lt_rpow_of_exponent_gt
rpow_lt_self_of_one_lt πŸ“–mathematicalReal
instLT
instOne
instPowβ€”rpow_one
rpow_lt_rpow_of_exponent_lt
rpow_max πŸ“–mathematicalReal
instLE
instZero
instPow
instMax
β€”le_total
max_eq_right
rpow_le_rpow
max_eq_left
rpow_mul πŸ“–mathematicalReal
instLE
instZero
instPow
instMul
β€”Complex.ofReal_cpow
rpow_nonneg
Complex.ofReal_mul
Complex.cpow_mul
Complex.ofReal_log
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_of_lt
pi_pos
rpow_mul_intCast πŸ“–mathematicalReal
instLE
instZero
instPow
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_mul
rpow_intCast
rpow_mul_natCast πŸ“–mathematicalReal
instLE
instZero
instPow
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”rpow_mul
rpow_natCast
rpow_natCast πŸ“–mathematicalβ€”Real
instPow
instNatCast
Monoid.toNatPow
instMonoid
β€”Int.cast_natCast
zpow_natCast
rpow_intCast
rpow_natCast_mul πŸ“–mathematicalReal
instLE
instZero
instPow
instMul
instNatCast
Monoid.toNatPow
instMonoid
β€”rpow_mul
rpow_natCast
rpow_ne_zero πŸ“–β€”Real
instLE
instZero
β€”β€”β€”
rpow_neg πŸ“–mathematicalReal
instLE
instZero
instPow
instNeg
instInv
β€”rpow_def_of_nonneg
inv_one
neg_zero
inv_zero
mul_neg
exp_neg
rpow_neg_eq_inv_rpow πŸ“–mathematicalβ€”Real
instPow
instNeg
instInv
β€”Complex.ofReal_neg
Complex.cpow_neg
Complex.inv_re
Complex.ofReal_inv
Complex.inv_cpow_eq_ite
Complex.conj_ofReal
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Complex.normSq_conj
rpow_neg_natCast πŸ“–mathematicalβ€”Real
instPow
instNeg
instNatCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_intCast
Int.cast_neg
Int.cast_natCast
rpow_neg_ofNat πŸ“–mathematicalβ€”Real
instPow
instNeg
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_neg_natCast
rpow_neg_one πŸ“–mathematicalβ€”Real
instPow
instNeg
instOne
instInv
β€”rpow_neg_eq_inv_rpow
rpow_one
rpow_nonneg πŸ“–mathematicalReal
instLE
instZero
instPowβ€”rpow_def_of_nonneg
instZeroLEOneClass
le_of_lt
exp_pos
rpow_ofNat πŸ“–mathematicalβ€”Real
instPow
Monoid.toNatPow
instMonoid
β€”rpow_natCast
rpow_of_add_eq πŸ“–mathematicalReal
instLE
instZero
instAdd
instPow
instMul
β€”rpow_add'
rpow_one πŸ“–mathematicalβ€”Real
instPow
instOne
β€”Complex.cpow_one
rpow_one_add' πŸ“–mathematicalReal
instLE
instZero
instPow
instAdd
instOne
instMul
β€”rpow_add'
rpow_one
rpow_one_sub' πŸ“–mathematicalReal
instLE
instZero
instPow
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
β€”rpow_sub'
rpow_one
rpow_pos_of_pos πŸ“–mathematicalReal
instLT
instZero
instPowβ€”rpow_def_of_pos
exp_pos
rpow_pow_comm πŸ“–mathematicalReal
instLE
instZero
Monoid.toNatPow
instMonoid
instPow
β€”rpow_mul
mul_comm
rpow_right_inj πŸ“–mathematicalReal
instLT
instZero
instPowβ€”Ne.lt_or_gt
StrictAnti.injective
strictAnti_rpow_of_base_lt_one
StrictMono.injective
strictMono_rpow_of_base_gt_one
rpow_rpow_inv πŸ“–mathematicalReal
instLE
instZero
instPow
instInv
β€”rpow_mul
mul_inv_cancelβ‚€
rpow_one
rpow_sub πŸ“–mathematicalReal
instLT
instZero
instPow
instSub
DivInvMonoid.toDiv
instDivInvMonoid
β€”sub_eq_add_neg
rpow_add
rpow_neg
le_of_lt
div_eq_mul_inv
rpow_sub' πŸ“–mathematicalReal
instLE
instZero
instPow
instSub
DivInvMonoid.toDiv
instDivInvMonoid
β€”sub_eq_add_neg
rpow_add'
rpow_neg
div_eq_mul_inv
rpow_sub_intCast πŸ“–mathematicalβ€”Real
instPow
instSub
instIntCast
DivInvMonoid.toDiv
instDivInvMonoid
DivInvMonoid.toZPow
β€”Int.cast_neg
zpow_neg
rpow_add_intCast
rpow_sub_intCast' πŸ“–mathematicalReal
instLE
instZero
instPow
instSub
instIntCast
DivInvMonoid.toDiv
instDivInvMonoid
DivInvMonoid.toZPow
β€”rpow_sub'
rpow_intCast
rpow_sub_natCast πŸ“–mathematicalβ€”Real
instPow
instSub
instNatCast
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
β€”Int.cast_natCast
zpow_natCast
rpow_sub_intCast
rpow_sub_natCast' πŸ“–mathematicalReal
instLE
instZero
instPow
instSub
instNatCast
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
β€”rpow_sub'
rpow_natCast
rpow_sub_one πŸ“–mathematicalβ€”Real
instPow
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
β€”Nat.cast_one
pow_one
rpow_sub_natCast
rpow_sub_one' πŸ“–mathematicalReal
instLE
instZero
instPow
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
β€”rpow_sub'
rpow_one
rpow_sum_of_nonneg πŸ“–mathematicalReal
instLE
instZero
instPow
Finset.sum
instAddCommMonoid
Finset.prod
instCommMonoid
β€”Finset.cons_induction
Finset.sum_empty
Finset.prod_empty
rpow_zero
Finset.sum_cons
Finset.prod_cons
Finset.forall_mem_cons
rpow_add_of_nonneg
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_sum_of_pos πŸ“–mathematicalReal
instLT
instZero
instPow
Finset.sum
instAddCommMonoid
Finset.prod
instCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
rpow_zero
rpow_add
rpow_two πŸ“–mathematicalβ€”Real
instPow
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
rpow_ofNat
rpow_zero πŸ“–mathematicalβ€”Real
instPow
instZero
instOne
β€”Complex.cpow_zero
rpow_zero_pos πŸ“–mathematicalβ€”Real
instLT
instZero
instPow
β€”rpow_zero
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
rpow_zpow_comm πŸ“–mathematicalReal
instLE
instZero
DivInvMonoid.toZPow
instDivInvMonoid
instPow
β€”rpow_mul
mul_comm
self_le_rpow_of_le_one πŸ“–mathematicalReal
instLE
instZero
instOne
instPowβ€”rpow_one
rpow_le_rpow_of_exponent_ge_of_imp
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
self_le_rpow_of_one_le πŸ“–mathematicalReal
instLE
instOne
instPowβ€”rpow_one
rpow_le_rpow_of_exponent_le
self_lt_rpow_of_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instPowβ€”rpow_one
rpow_lt_rpow_of_exponent_gt
self_lt_rpow_of_one_lt πŸ“–mathematicalReal
instLT
instOne
instPowβ€”rpow_one
rpow_lt_rpow_of_exponent_lt
sqrt_eq_rpow πŸ“–mathematicalβ€”sqrt
Real
instPow
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
le_or_gt
mul_self_inj_of_nonneg
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
instIsStrictOrderedRing
sqrt_nonneg
rpow_nonneg
mul_self_sqrt
sq
rpow_natCast
rpow_mul
one_div
inv_mul_cancelβ‚€
RCLike.charZero_rclike
rpow_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
sqrt_eq_zero_of_nonpos
LT.lt.le
rpow_def_of_neg
cos_pi_div_two
MulZeroClass.mul_zero
strictAntiOn_rpow_Ioi_of_exponent_neg πŸ“–mathematicalReal
instLT
instZero
StrictAntiOn
instPreorder
instPow
Set.Ioi
β€”rpow_lt_rpow_of_neg
strictAnti_rpow_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
StrictAnti
instPreorder
instPow
β€”rpow_def_of_pos
StrictMono.comp_strictAnti
exp_strictMono
StrictMono.const_mul_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
strictMono_id
log_neg
strictMonoOn_rpow_Ici_of_exponent_pos πŸ“–mathematicalReal
instLT
instZero
StrictMonoOn
instPreorder
instPow
Set.Ici
β€”rpow_lt_rpow
strictMono_rpow_of_base_gt_one πŸ“–mathematicalReal
instLT
instOne
StrictMono
instPreorder
instPow
β€”rpow_def_of_pos
LT.lt.trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
StrictMono.comp
exp_strictMono
StrictMono.const_mul
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
strictMono_id
log_pos
zero_rpow πŸ“–mathematicalβ€”Real
instPow
instZero
β€”Complex.zero_cpow
zero_rpow_eq_iff πŸ“–mathematicalβ€”Real
instPow
instZero
instOne
β€”Complex.cpow_zero
Complex.zero_cpow
Complex.ofReal_ne_zero
zero_rpow
rpow_zero
zero_rpow_le_one πŸ“–mathematicalβ€”Real
instLE
instPow
instZero
instOne
β€”rpow_zero
zero_rpow
instZeroLEOneClass
zero_rpow_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
instPow
β€”rpow_zero
instZeroLEOneClass
zero_rpow
zpow_le_iff_le_log πŸ“–mathematicalReal
instLT
instZero
instLE
DivInvMonoid.toZPow
instDivInvMonoid
instMul
instIntCast
log
β€”rpow_le_iff_le_log
rpow_intCast
zpow_le_of_le_log πŸ“–mathematicalReal
instLT
instZero
instLE
log
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_le_of_le_log
rpow_intCast
zpow_lt_iff_lt_log πŸ“–mathematicalReal
instLT
instZero
DivInvMonoid.toZPow
instDivInvMonoid
instMul
instIntCast
log
β€”rpow_lt_iff_lt_log
rpow_intCast
zpow_lt_of_lt_log πŸ“–mathematicalReal
instLT
instZero
log
instMul
instIntCast
DivInvMonoid.toZPow
instDivInvMonoid
β€”rpow_lt_of_lt_log
rpow_intCast

---

← Back to Index