Documentation Verification Report

Sigmoid

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Sigmoid.lean

Statistics

MetricCount
Definitionssigmoid, sigmoid, sigmoid
3
Theoremssigmoid, sigmoid', sigmoid, sigmoid, sigmoid, sigmoid, sigmoid, sigmoid, sigmoid, deriv_sigmoid, hasDerivAt_sigmoid, range_sigmoid, sigmoid_def, sigmoid_inj, sigmoid_injective, sigmoid_le, sigmoid_le_iff, sigmoid_le_one, sigmoid_lt, sigmoid_lt_iff, sigmoid_lt_one, sigmoid_monotone, sigmoid_mul_rexp_neg, sigmoid_neg, sigmoid_nonneg, sigmoid_pos, sigmoid_strictMono, sigmoid_zero, tendsto_sigmoid_atBot, tendsto_sigmoid_atTop, isEmbedding_sigmoid, analyticAt_sigmoid, analyticOnNhd_sigmoid, analyticOn_sigmoid, analyticWithinAt_sigmoid, contDiff_sigmoid, continuous_sigmoid, differentiableAt_sigmoid, differentiable_sigmoid, measurableEmbedding_sigmoid, measurableEmbedding_sigmoid_comp_embeddingReal, continuous_sigmoid, range_sigmoid, sigmoid_inj, sigmoid_injective, sigmoid_le, sigmoid_le_iff, sigmoid_lt, sigmoid_lt_iff, sigmoid_lt_one, sigmoid_monotone, sigmoid_neg, sigmoid_pos, sigmoid_strictMono, tendsto_sigmoid_atBot, tendsto_sigmoid_atTop
56
Total59

AnalyticAt

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalAnalyticAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoidβ€”comp
analyticAt_sigmoid
sigmoid' πŸ“–mathematicalAnalyticAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoidβ€”sigmoid

AnalyticOn

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalAnalyticOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoidβ€”AnalyticOnNhd.comp_analyticOn
analyticOnNhd_sigmoid
Set.mapsTo_univ

AnalyticOnNhd

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalAnalyticOnNhd
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoidβ€”AnalyticAt.comp
analyticAt_sigmoid

AnalyticWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalAnalyticWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoidβ€”AnalyticAt.comp_analyticWithinAt
analyticAt_sigmoid

ContDiff

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Top.top
WithTop
ENat
WithTop.top
Real.sigmoidβ€”comp
contDiff_sigmoid

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.pseudoMetricSpace
Real.sigmoidβ€”comp
continuous_sigmoid

Differentiable

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalDifferentiable
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Real.pseudoMetricSpace
Real.sigmoidβ€”comp
differentiable_sigmoid

DifferentiableAt

Theorems

NameKindAssumesProvesValidatesDepends On
sigmoid πŸ“–mathematicalDifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Real.pseudoMetricSpace
Real.sigmoidβ€”comp
differentiableAt_sigmoid

OrderEmbedding

Definitions

NameCategoryTheorems
sigmoid πŸ“–CompOpβ€”

Real

Definitions

NameCategoryTheorems
sigmoid πŸ“–CompOp
38 mathmath: hasDerivAt_sigmoid, ContDiff.sigmoid, DifferentiableAt.sigmoid, Continuous.sigmoid, tendsto_sigmoid_atTop, differentiableAt_sigmoid, sigmoid_neg, sigmoid_le, AnalyticOn.sigmoid, sigmoid_nonneg, AnalyticAt.sigmoid', sigmoid_lt_iff, sigmoid_inj, sigmoid_def, analyticOnNhd_sigmoid, sigmoid_mul_rexp_neg, sigmoid_pos, tendsto_sigmoid_atBot, sigmoid_injective, sigmoid_lt, analyticAt_sigmoid, Differentiable.sigmoid, AnalyticAt.sigmoid, sigmoid_monotone, sigmoid_le_one, sigmoid_le_iff, analyticWithinAt_sigmoid, analyticOn_sigmoid, sigmoid_zero, deriv_sigmoid, AnalyticWithinAt.sigmoid, AnalyticOnNhd.sigmoid, range_sigmoid, sigmoid_strictMono, sigmoid_lt_one, differentiable_sigmoid, contDiff_sigmoid, continuous_sigmoid

Theorems

NameKindAssumesProvesValidatesDepends On
deriv_sigmoid πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
InnerProductSpace.toNormedSpace
instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sigmoid
instMul
instSub
instOne
β€”HasDerivAt.deriv
hasDerivAt_sigmoid
hasDerivAt_sigmoid πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
InnerProductSpace.toNormedSpace
instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
IsModuleTopology.toContinuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
instAdd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsTopologicalSemiring.toIsModuleTopology
semiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
sigmoid
instMul
instSub
instOne
β€”IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
sigmoid_neg
sigmoid_mul_rexp_neg
sigmoid_def
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
mul_neg
neg_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
mul_one
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
exp_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
HasDerivAt.inv
HasDerivAt.const_add
HasDerivAt.exp
hasDerivAt_neg'
range_sigmoid πŸ“–mathematicalβ€”Set.range
Real
sigmoid
Set.Ioo
instPreorder
instZero
instOne
β€”subset_antisymm
Set.instAntisymmSubset
sigmoid_pos
sigmoid_lt_one
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
one_lt_inv_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instZeroLEOneClass
neg_neg
exp_log
add_sub_cancel
inv_inv
sigmoid_def πŸ“–mathematicalβ€”sigmoid
Real
instInv
instAdd
instOne
exp
instNeg
β€”β€”
sigmoid_inj πŸ“–mathematicalβ€”sigmoidβ€”sigmoid_injective
sigmoid_injective πŸ“–mathematicalβ€”Real
sigmoid
β€”StrictMono.injective
sigmoid_strictMono
sigmoid_le πŸ“–mathematicalReal
instLE
sigmoidβ€”sigmoid_le_iff
sigmoid_le_iff πŸ“–mathematicalβ€”Real
instLE
sigmoid
β€”StrictMono.le_iff_le
sigmoid_strictMono
sigmoid_le_one πŸ“–mathematicalβ€”Real
instLE
sigmoid
instOne
β€”LT.lt.le
sigmoid_lt_one
sigmoid_lt πŸ“–mathematicalReal
instLT
sigmoidβ€”sigmoid_lt_iff
sigmoid_lt_iff πŸ“–mathematicalβ€”Real
instLT
sigmoid
β€”StrictMono.lt_iff_lt
sigmoid_strictMono
sigmoid_lt_one πŸ“–mathematicalβ€”Real
instLT
sigmoid
instOne
β€”inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instZeroLEOneClass
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
exp_pos
sigmoid_monotone πŸ“–mathematicalβ€”Monotone
Real
instPreorder
sigmoid
β€”StrictMono.monotone
sigmoid_strictMono
sigmoid_mul_rexp_neg πŸ“–mathematicalβ€”Real
instMul
sigmoid
exp
instNeg
β€”sigmoid_neg
sigmoid_def
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
exp_pos
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
sigmoid_neg πŸ“–mathematicalβ€”sigmoid
Real
instNeg
instSub
instOne
β€”Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
neg_neg
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
exp_pos
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
add_comm
add_sub_cancel_right
add_mul
Distrib.rightDistribClass
add_neg_cancel
exp_zero
sigmoid_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
sigmoid
β€”LT.lt.le
sigmoid_pos
sigmoid_pos πŸ“–mathematicalβ€”Real
instLT
instZero
sigmoid
β€”inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
exp_pos
sigmoid_strictMono πŸ“–mathematicalβ€”StrictMono
Real
instPreorder
sigmoid
β€”inv_strictAntiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
exp_pos
add_lt_add_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
exp_strictMono
neg_lt_neg
sigmoid_zero πŸ“–mathematicalβ€”sigmoid
Real
instZero
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
exp_zero
Mathlib.Meta.NormNum.isNat_add
Nat.cast_one
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
tendsto_sigmoid_atBot πŸ“–mathematicalβ€”Filter.Tendsto
Real
sigmoid
Filter.atBot
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”Filter.Tendsto.inv_tendsto_atTop
instIsStrictOrderedRing
instOrderTopologyReal
Filter.Tendsto.add_atTop
instIsOrderedAddMonoid
tendsto_const_nhds
tendsto_exp_comp_atTop
Filter.tendsto_neg_atBot_atTop
tendsto_sigmoid_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
sigmoid
Filter.atTop
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instOne
β€”add_zero
inv_one
Filter.Tendsto.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
Filter.Tendsto.const_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_exp_comp_nhds_zero
Filter.tendsto_neg_atTop_atBot
instIsOrderedAddMonoid
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_zero

Topology

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding_sigmoid πŸ“–mathematicalβ€”IsEmbedding
Real
Set.Elem
unitInterval
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
unitInterval.sigmoid
β€”OrderEmbedding.isEmbedding_of_ordConnected
instOrderTopologyReal
orderTopology_of_ordConnected
Set.ordConnected_Icc
Set.ordConnected_of_Ioo
Real.instIsOrderedRing
Set.Ioo_subset_Ioo
unitInterval.range_sigmoid

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
analyticAt_sigmoid πŸ“–mathematicalβ€”AnalyticAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoid
β€”AnalyticAt.fun_inv
AnalyticAt.fun_add
analyticAt_const
AnalyticAt.rexp'
AnalyticAt.fun_neg
analyticAt_id
ne_of_gt
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Real.exp_pos
analyticOnNhd_sigmoid πŸ“–mathematicalβ€”AnalyticOnNhd
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoid
Set.univ
β€”analyticAt_sigmoid
analyticOn_sigmoid πŸ“–mathematicalβ€”AnalyticOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoid
Set.univ
β€”AnalyticOnNhd.analyticOn
analyticOnNhd_sigmoid
analyticWithinAt_sigmoid πŸ“–mathematicalβ€”AnalyticWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sigmoid
β€”AnalyticAt.analyticWithinAt
analyticAt_sigmoid
contDiff_sigmoid πŸ“–mathematicalβ€”ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Top.top
WithTop
ENat
WithTop.top
Real.sigmoid
β€”AnalyticOn.contDiff
analyticOn_sigmoid
continuous_sigmoid πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sigmoid
β€”Differentiable.continuous
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
Differentiable.sigmoid
differentiable_id
differentiableAt_sigmoid πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sigmoid
β€”differentiable_sigmoid
differentiable_sigmoid πŸ“–mathematicalβ€”Differentiable
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sigmoid
β€”ContDiff.differentiable_one
ContDiff.of_le
contDiff_sigmoid
le_top
measurableEmbedding_sigmoid πŸ“–mathematicalβ€”MeasurableEmbedding
Real
Set.Elem
unitInterval
Real.measurableSpace
Subtype.instMeasurableSpace
Set
Set.instMembership
unitInterval.sigmoid
β€”Topology.IsEmbedding.measurableEmbedding
Real.borelSpace
Subtype.borelSpace
Topology.isEmbedding_sigmoid
Real.instIsOrderedRing
measurableSet_Ioo
Subtype.opensMeasurableSpace
BorelSpace.opensMeasurable
Subtype.instOrderClosedTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
unitInterval.range_sigmoid
measurableEmbedding_sigmoid_comp_embeddingReal πŸ“–mathematicalβ€”MeasurableEmbedding
Set.Elem
Real
unitInterval
Subtype.instMeasurableSpace
Set
Set.instMembership
Real.measurableSpace
unitInterval.sigmoid
MeasureTheory.embeddingReal
β€”MeasurableEmbedding.comp
measurableEmbedding_sigmoid
MeasureTheory.measurableEmbedding_embeddingReal

unitInterval

Definitions

NameCategoryTheorems
sigmoid πŸ“–CompOp
18 mathmath: sigmoid_le_iff, sigmoid_lt, sigmoid_strictMono, measurableEmbedding_sigmoid, measurableEmbedding_sigmoid_comp_embeddingReal, continuous_sigmoid, range_sigmoid, sigmoid_neg, sigmoid_injective, tendsto_sigmoid_atTop, sigmoid_lt_iff, sigmoid_monotone, sigmoid_inj, sigmoid_pos, Topology.isEmbedding_sigmoid, tendsto_sigmoid_atBot, sigmoid_lt_one, sigmoid_le

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_sigmoid πŸ“–mathematicalβ€”Continuous
Real
Set.Elem
unitInterval
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
sigmoid
β€”continuous_sigmoid
range_sigmoid πŸ“–mathematicalβ€”Set.range
Set.Elem
Real
unitInterval
sigmoid
Set.Ioo
Subtype.preorder
Real.instPreorder
Set
Set.instMembership
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
β€”Real.instIsOrderedRing
sigmoid.eq_1
Set.Subtype.range_coind
Real.range_sigmoid
Set.ext
sigmoid_inj πŸ“–mathematicalβ€”sigmoidβ€”sigmoid_injective
sigmoid_injective πŸ“–mathematicalβ€”Real
Set.Elem
unitInterval
sigmoid
β€”StrictMono.injective
sigmoid_strictMono
sigmoid_le πŸ“–mathematicalReal
Real.instLE
Set.Elem
unitInterval
Set
Set.instMembership
sigmoid
β€”sigmoid_le_iff
sigmoid_le_iff πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
sigmoid
β€”Real.sigmoid_le_iff
sigmoid_lt πŸ“–mathematicalReal
Real.instLT
Set.Elem
unitInterval
Set
Set.instMembership
sigmoid
β€”sigmoid_lt_iff
sigmoid_lt_iff πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
sigmoid
β€”Real.sigmoid_lt_iff
sigmoid_lt_one πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
sigmoid
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.sigmoid_lt_one
sigmoid_monotone πŸ“–mathematicalβ€”Monotone
Real
Set.Elem
unitInterval
Real.instPreorder
Subtype.preorder
Set
Set.instMembership
sigmoid
β€”StrictMono.monotone
sigmoid_strictMono
sigmoid_neg πŸ“–mathematicalβ€”sigmoid
Real
Real.instNeg
symm
β€”Real.sigmoid_neg
sigmoid_pos πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
sigmoid
β€”Real.sigmoid_pos
sigmoid_strictMono πŸ“–mathematicalβ€”StrictMono
Real
Set.Elem
unitInterval
Real.instPreorder
Subtype.preorder
Set
Set.instMembership
sigmoid
β€”Real.sigmoid_strictMono
tendsto_sigmoid_atBot πŸ“–mathematicalβ€”Filter.Tendsto
Real
Set.Elem
unitInterval
sigmoid
Filter.atBot
Real.instPreorder
nhds
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
tendsto_subtype_rng
Real.tendsto_sigmoid_atBot
tendsto_sigmoid_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Set.Elem
unitInterval
sigmoid
Filter.atTop
Real.instPreorder
nhds
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
tendsto_subtype_rng
Real.tendsto_sigmoid_atTop

---

← Back to Index