Documentation Verification Report

SmoothTransition

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/SmoothTransition.lean

Statistics

MetricCount
DefinitionssmoothTransition, expNegInvGlue
2
TheoremscontDiff, contDiffAt, continuous, continuousAt, eq_one_iff_one_le, le_one, lt_one_of_lt_one, monotone, nonneg, one, one_of_one_le, pos_denom, pos_of_pos, projIcc, zero, zero_iff_nonpos, zero_of_nonpos, contDiff, contDiff_polynomial_eval_inv_mul, continuous_polynomial_eval_inv_mul, differentiable_polynomial_eval_inv_mul, hasDerivAt_polynomial_eval_inv_mul, monotone, nonneg, not_analyticAt_zero, pos_of_pos, tendsto_polynomial_inv_mul_zero, zero, zero_iff_nonpos, zero_of_nonpos
30
Total32

Real

Definitions

NameCategoryTheorems
smoothTransition πŸ“–CompOp
16 mathmath: smoothTransition.eq_one_iff_one_le, smoothTransition.zero_of_nonpos, smoothTransition.one, smoothTransition.one_of_one_le, smoothTransition.zero, smoothTransition.contDiffAt, smoothTransition.lt_one_of_lt_one, smoothTransition.le_one, smoothTransition.continuousAt, smoothTransition.nonneg, smoothTransition.pos_of_pos, smoothTransition.continuous, smoothTransition.zero_iff_nonpos, smoothTransition.projIcc, smoothTransition.monotone, smoothTransition.contDiff

Real.smoothTransition

Theorems

NameKindAssumesProvesValidatesDepends On
contDiff πŸ“–mathematicalβ€”ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
WithTop.some
ENat
Real.smoothTransition
β€”ContDiff.div
expNegInvGlue.contDiff
ContDiff.add
ContDiff.comp
ContDiff.sub
contDiff_const
contDiff_id
LT.lt.ne'
pos_denom
contDiffAt πŸ“–mathematicalβ€”ContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
WithTop.some
ENat
Real.smoothTransition
β€”ContDiff.contDiffAt
contDiff
continuous πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.smoothTransition
β€”ContDiff.continuous
contDiff
continuousAt πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.smoothTransition
β€”Continuous.continuousAt
continuous
eq_one_iff_one_le πŸ“–mathematicalβ€”Real.smoothTransition
Real
Real.instOne
Real.instLE
β€”le_or_gt
one_of_one_le
LT.lt.ne
lt_one_of_lt_one
le_one πŸ“–mathematicalβ€”Real
Real.instLE
Real.smoothTransition
Real.instOne
β€”div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos_denom
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
expNegInvGlue.nonneg
lt_one_of_lt_one πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.smoothTransitionβ€”div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos_denom
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
expNegInvGlue.pos_of_pos
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
monotone πŸ“–mathematicalβ€”Monotone
Real
Real.instPreorder
Real.smoothTransition
β€”div_le_div_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos_denom
mul_add
Distrib.leftDistribClass
mul_comm
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
expNegInvGlue.monotone
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
expNegInvGlue.nonneg
nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Real.smoothTransition
β€”div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
expNegInvGlue.nonneg
LT.lt.le
pos_denom
one πŸ“–mathematicalβ€”Real.smoothTransition
Real
Real.instOne
β€”one_of_one_le
le_rfl
one_of_one_le πŸ“–mathematicalReal
Real.instLE
Real.instOne
Real.smoothTransitionβ€”div_eq_one_iff_eq
LT.lt.ne'
pos_denom
expNegInvGlue.zero_of_nonpos
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_zero
pos_denom πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Real.instAdd
expNegInvGlue
Real.instSub
Real.instOne
β€”LT.lt.gt_or_lt
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
expNegInvGlue.pos_of_pos
expNegInvGlue.nonneg
add_pos_of_nonneg_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
pos_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.smoothTransitionβ€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
expNegInvGlue.pos_of_pos
pos_denom
projIcc πŸ“–mathematicalβ€”Real.smoothTransition
Real
Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.linearOrder
Real.instZero
Real.instOne
Set.projIcc
zero_le_one
Preorder.toLE
Real.instZeroLEOneClass
β€”zero_le_one
Real.instZeroLEOneClass
Set.IccExtend_eq_self
zero
zero_of_nonpos
LT.lt.le
one
one_of_one_le
zero πŸ“–mathematicalβ€”Real.smoothTransition
Real
Real.instZero
β€”zero_of_nonpos
le_rfl
zero_iff_nonpos πŸ“–mathematicalβ€”Real.smoothTransition
Real
Real.instZero
Real.instLE
β€”LT.lt.ne'
pos_denom
zero_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.smoothTransitionβ€”zero_iff_nonpos

(root)

Definitions

NameCategoryTheorems
expNegInvGlue πŸ“–CompOp
14 mathmath: expNegInvGlue.hasDerivAt_polynomial_eval_inv_mul, expNegInvGlue.not_analyticAt_zero, expNegInvGlue.pos_of_pos, expNegInvGlue.tendsto_polynomial_inv_mul_zero, expNegInvGlue.nonneg, expNegInvGlue.monotone, expNegInvGlue.contDiff, expNegInvGlue.continuous_polynomial_eval_inv_mul, expNegInvGlue.contDiff_polynomial_eval_inv_mul, expNegInvGlue.zero, expNegInvGlue.differentiable_polynomial_eval_inv_mul, Real.smoothTransition.pos_denom, expNegInvGlue.zero_of_nonpos, expNegInvGlue.zero_iff_nonpos

expNegInvGlue

Theorems

NameKindAssumesProvesValidatesDepends On
contDiff πŸ“–mathematicalβ€”ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
WithTop.some
ENat
expNegInvGlue
β€”Polynomial.eval_one
one_mul
contDiff_polynomial_eval_inv_mul
contDiff_polynomial_eval_inv_mul πŸ“–mathematicalβ€”ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
WithTop.some
ENat
Real.instMul
Polynomial.eval
Real.semiring
Real.instInv
expNegInvGlue
β€”contDiff_all_iff_nat
contDiff_zero
continuous_polynomial_eval_inv_mul
contDiff_succ_iff_deriv
differentiable_polynomial_eval_inv_mul
instIsEmptyFalse
HasDerivAt.deriv
hasDerivAt_polynomial_eval_inv_mul
continuous_polynomial_eval_inv_mul πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Polynomial.eval
Real.semiring
Real.instInv
expNegInvGlue
β€”Differentiable.continuous
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
differentiable_polynomial_eval_inv_mul
differentiable_polynomial_eval_inv_mul πŸ“–mathematicalβ€”Differentiable
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Polynomial.eval
Real.semiring
Real.instInv
expNegInvGlue
β€”HasDerivAt.differentiableAt
hasDerivAt_polynomial_eval_inv_mul
hasDerivAt_polynomial_eval_inv_mul πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
Real.instMul
Polynomial.eval
Real.semiring
Real.instInv
expNegInvGlue
Polynomial
Polynomial.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Polynomial.semiring
Polynomial.X
Polynomial.instSub
Real.instRing
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
lt_trichotomy
zero_of_nonpos
LT.lt.le
MulZeroClass.mul_zero
HasDerivAt.congr_of_eventuallyEq
hasDerivAt_const
Filter.mp_mem
gt_mem_nhds
instOrderTopologyReal
Filter.univ_mem'
zero
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
hasDerivAt_iff_tendsto_slope
Filter.Tendsto.congr
Polynomial.eval_mul
Polynomial.eval_X
mul_right_comm
slope_def_field
inv_zero
sub_zero
div_eq_mul_inv
Filter.Tendsto.mono_left
tendsto_polynomial_inv_mul_zero
inf_le_left
HasDerivAt.comp
HasDerivAt.mul
Polynomial.hasDerivAt
HasDerivAt.exp
hasDerivAt_neg
hasDerivAt_inv
LT.lt.ne'
Polynomial.eval_pow
inv_pow
Polynomial.eval_sub
LT.lt.not_ge
mul_neg
mul_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
lt_mem_nhds
monotone πŸ“–mathematicalβ€”Monotone
Real
Real.instPreorder
expNegInvGlue
β€”le_or_gt
zero_of_nonpos
not_le
LT.lt.trans_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
expNegInvGlue
β€”le_or_gt
ge_of_eq
zero_of_nonpos
le_of_lt
pos_of_pos
not_analyticAt_zero πŸ“–mathematicalβ€”AnalyticAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
expNegInvGlue
Real.instZero
β€”AnalyticAt.exists_ball_analyticOnNhd
Real.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
AnalyticOnNhd.eqOn_zero_of_preconnected_of_mem_closure
isPreconnected_Ioo
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.ball_eq_Ioo
dist_self
Set.Iic_diff_right
closure_Iio
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
dist_zero_right
norm_div
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.norm_ofNat
pos_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
expNegInvGlueβ€”not_le
tendsto_polynomial_inv_mul_zero πŸ“–mathematicalβ€”Filter.Tendsto
Real
Real.instMul
Polynomial.eval
Real.semiring
Real.instInv
expNegInvGlue
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”mul_ite
MulZeroClass.mul_zero
Filter.Tendsto.if
tendsto_const_nhds
Filter.Tendsto.comp
Polynomial.tendsto_div_exp_atTop
tendsto_inv_nhdsGT_zero
Real.instIsStrictOrderedRing
instOrderTopologyReal
Filter.Tendsto.congr'
Filter.mem_of_superset
self_mem_nhdsWithin
div_eq_mul_inv
Real.exp_neg
zero πŸ“–mathematicalβ€”expNegInvGlue
Real
Real.instZero
β€”zero_of_nonpos
le_rfl
zero_iff_nonpos πŸ“–mathematicalβ€”expNegInvGlue
Real
Real.instZero
Real.instLE
β€”not_lt
LT.lt.ne'
pos_of_pos
zero_of_nonpos
zero_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
expNegInvGlueβ€”β€”

---

← Back to Index