Documentation Verification Report

Angle

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean

Statistics

MetricCount
DefinitionsAngle, coeHom, cos, instCircularOrder, instCoe, sign, sin, tan, toReal, instInhabitedAngle, instNormedAddCommGroupAngle
11
Theoremsangle_sign_comp, abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi, abs_cos_eq_abs_sin_of_two_zsmul_add_two_zsmul_eq_pi, abs_cos_eq_of_two_nsmul_eq, abs_cos_eq_of_two_zsmul_eq, abs_sin_eq_of_two_nsmul_eq, abs_sin_eq_of_two_zsmul_eq, abs_toReal_add_abs_toReal_eq_pi_of_two_nsmul_add_eq_zero_of_sign_eq, abs_toReal_add_abs_toReal_eq_pi_of_two_zsmul_add_eq_zero_of_sign_eq, abs_toReal_add_eq_two_pi_sub_abs_toReal_add_abs_toReal, abs_toReal_coe_eq_self_iff, abs_toReal_eq_pi_div_two_iff, abs_toReal_le_pi, abs_toReal_neg, abs_toReal_neg_coe_eq_self_iff, angle_eq_iff_two_pi_dvd_sub, coe_abs_toReal_of_sign_nonneg, coe_add, coe_coeHom, coe_eq_zero_iff, coe_neg, coe_nsmul, coe_pi_add_coe_pi, coe_sub, coe_toIcoMod, coe_toIocMod, coe_toReal, coe_two_pi, coe_zero, coe_zsmul, continuousAt_sign, continuous_coe, continuous_cos, continuous_sin, cos_add, cos_add_pi, cos_add_pi_div_two, cos_antiperiodic, cos_coe, cos_coe_pi, cos_eq_iff_coe_eq_or_eq_neg, cos_eq_iff_eq_or_eq_neg, cos_eq_real_cos_iff_eq_or_eq_neg, cos_eq_zero_iff, cos_neg, cos_neg_iff_pi_div_two_lt_abs_toReal, cos_nonneg_iff_abs_toReal_le_pi_div_two, cos_pi_div_two_sub, cos_pos_iff_abs_toReal_lt_pi_div_two, cos_sin_inj, cos_sq_add_sin_sq, cos_sub_pi, cos_sub_pi_div_two, cos_toReal, cos_zero, eq_add_pi_of_two_zsmul_eq_of_sign_eq_neg, eq_iff_abs_toReal_eq_of_sign_eq, eq_iff_sign_eq_and_abs_toReal_eq, eq_neg_self_iff, induction_on, intCast_mul_eq_zsmul, natCast_mul_eq_nsmul, ne_neg_self_iff, neg_coe_abs_toReal_of_sign_nonpos, neg_coe_pi, neg_eq_self_iff, neg_ne_self_iff, neg_pi_div_two_ne_zero, neg_pi_lt_toReal, nsmul_eq_iff, nsmul_toReal_eq_mul, pi_div_two_ne_zero, pi_ne_zero, sign_add_pi, sign_antiperiodic, sign_coe_neg_pi_div_two, sign_coe_nonneg_of_nonneg_of_le_pi, sign_coe_pi, sign_coe_pi_div_two, sign_eq_of_continuousOn, sign_eq_zero_iff, sign_ne_zero_iff, sign_neg, sign_neg_coe_nonpos_of_nonneg_of_le_pi, sign_pi_add, sign_pi_sub, sign_sub_pi, sign_toReal, sign_two_nsmul_eq_neg_sign_iff, sign_two_nsmul_eq_sign_iff, sign_two_zsmul_eq_neg_sign_iff, sign_two_zsmul_eq_sign_iff, sign_zero, sin_add, sin_add_pi, sin_add_pi_div_two, sin_antiperiodic, sin_coe, sin_coe_pi, sin_eq_iff_coe_eq_or_add_eq_pi, sin_eq_iff_eq_or_add_eq_pi, sin_eq_real_sin_iff_eq_or_add_eq_pi, sin_eq_zero_iff, sin_ne_zero_iff, sin_neg, sin_pi_div_two_sub, sin_sub_pi, sin_sub_pi_div_two, sin_toReal, sin_two_nsmul, sin_zero, sub_coe_pi_eq_add_coe_pi, sub_ne_pi_of_sign_eq_of_sign_ne_zero, tan_add_pi, tan_coe, tan_coe_pi, tan_eq_inv_of_two_nsmul_add_two_nsmul_eq_pi, tan_eq_inv_of_two_zsmul_add_two_zsmul_eq_pi, tan_eq_of_two_nsmul_eq, tan_eq_of_two_zsmul_eq, tan_eq_sin_div_cos, tan_periodic, tan_sub_pi, tan_toReal, tan_zero, toIocMod_toReal, toReal_add_eq_toReal_add_toReal, toReal_add_of_sign_eq_neg_sign, toReal_add_of_sign_pos_sign_neg, toReal_coe, toReal_coe_eq_self_add_two_pi_iff, toReal_coe_eq_self_iff, toReal_coe_eq_self_iff_mem_Ioc, toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff, toReal_coe_eq_self_sub_two_pi_iff, toReal_eq_neg_pi_div_two_iff, toReal_eq_pi_div_two_iff, toReal_eq_pi_iff, toReal_eq_zero_iff, toReal_inj, toReal_injective, toReal_le_pi, toReal_mem_Ioc, toReal_mem_Ioo_iff_sign_pos, toReal_neg_eq_neg_toReal_iff, toReal_neg_iff_sign_neg, toReal_neg_pi_div_two, toReal_nonneg_iff_sign_nonneg, toReal_pi, toReal_pi_div_two, toReal_zero, two_nsmul_coe_div_two, two_nsmul_coe_pi, two_nsmul_eq_iff, two_nsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two, two_nsmul_eq_pi_iff, two_nsmul_eq_zero_iff, two_nsmul_ne_zero_iff, two_nsmul_neg_pi_div_two, two_nsmul_toReal_eq_two_mul, two_nsmul_toReal_eq_two_mul_add_two_pi, two_nsmul_toReal_eq_two_mul_sub_two_pi, two_zsmul_coe_div_two, two_zsmul_coe_pi, two_zsmul_eq_iff, two_zsmul_eq_iff_eq, two_zsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two, two_zsmul_eq_pi_iff, two_zsmul_eq_zero_iff, two_zsmul_ne_zero_iff, two_zsmul_neg_pi_div_two, two_zsmul_toReal_eq_two_mul, two_zsmul_toReal_eq_two_mul_add_two_pi, two_zsmul_toReal_eq_two_mul_sub_two_pi, zsmul_eq_iff
175
Total186

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
angle_sign_comp πŸ“–mathematicalContinuousOn
Real.Angle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
SignType
instTopologicalSpaceSignType
Real.Angle.sign
β€”comp
continuousOn_of_forall_continuousAt
Real.Angle.continuousAt_sign
Set.mapsTo_image

Real

Definitions

NameCategoryTheorems
Angle πŸ“–CompOp
221 mathmath: Angle.abs_toReal_neg_coe_eq_self_iff, Orientation.oangle_eq_zero_or_eq_pi_iff_right_eq_smul, Orientation.oangle_add, Angle.sign_two_zsmul_eq_sign_iff, Angle.neg_coe_abs_toReal_of_sign_nonpos, Angle.toReal_add_of_sign_eq_neg_sign, Orientation.oangle_add_swap, EuclideanGeometry.two_zsmul_oangle_of_parallel, EuclideanGeometry.oangle_eq_neg_of_angle_eq_of_sign_eq_neg, Angle.two_zsmul_eq_pi_iff, Orientation.oangle_eq_zero_iff_oangle_rev_eq_zero, Angle.sin_add_pi_div_two, Angle.cos_add, Orientation.eq_iff_norm_eq_and_oangle_eq_zero, Orientation.oangle_eq_two_zsmul_oangle_sub_of_norm_eq, Angle.cos_zero, Orientation.rotation_eq_self_iff, Angle.sign_neg_coe_nonpos_of_nonneg_of_le_pi, Orientation.two_zsmul_oangle_smul_left_of_ne_zero, EuclideanGeometry.oangle_eq_pi_sub_two_zsmul_oangle_of_dist_eq, Angle.toCircle_add, Angle.sin_eq_zero_iff, Angle.sign_neg, Orientation.neg_rotation, Sbtw.oangle_eq_add_pi_left, Orientation.eq_rotation_self_iff_angle_eq_zero, Orientation.two_zsmul_oangle_neg_left, Orientation.oangle_zero_left, EuclideanGeometry.oangle_eq_angle_or_eq_neg_angle, Angle.two_zsmul_eq_iff_eq, Angle.cos_eq_real_cos_iff_eq_or_eq_neg, EuclideanGeometry.oangle_self_left_right, Orientation.two_zsmul_oangle_neg_self_right, Orientation.oangle_neg_right, Angle.continuousAt_sign, Angle.two_zsmul_coe_div_two, Wbtw.oangle₃₁₂_eq_zero, EuclideanGeometry.oangle_rev, Angle.sign_two_nsmul_eq_neg_sign_iff, Angle.sign_pi_sub, EuclideanGeometry.oangle_eq_zero_iff_angle_eq_zero, Orientation.oangle_smul_left_self_of_nonneg, Angle.sign_eq_zero_iff, Wbtw.oangle₂₁₃_eq_zero, Orientation.rotation_rotation, Angle.two_nsmul_toReal_eq_two_mul_sub_two_pi, EuclideanGeometry.Sphere.oangle_eq_pi_sub_two_zsmul_oangle_center_left, EuclideanGeometry.oangle_add, Orientation.oangle_eq_angle_or_eq_neg_angle, EuclideanGeometry.oangle_eq_zero_iff_oangle_rev_eq_zero, Angle.sin_add_pi, Angle.sin_neg, Angle.cos_add_pi, EuclideanGeometry.oangle_add_swap, Angle.two_zsmul_coe_pi, Angle.cos_add_pi_div_two, Angle.two_nsmul_eq_zero_iff, Angle.coe_add, Angle.abs_toReal_neg, Orientation.rotation_symm, Sbtw.oangle₂₃₁_eq_zero, Sbtw.oangle_eq_add_pi_right, Orientation.oangle_eq_zero_iff_sameRay, Orientation.oangle_rotation_left, Angle.sign_zero, Angle.coe_eq_zero_iff, Angle.coe_coeHom, Angle.toReal_neg_eq_neg_toReal_iff, Angle.toCircle_zero, EuclideanGeometry.oangle_eq_zero_iff_wbtw, Angle.two_zsmul_toReal_eq_two_mul_sub_two_pi, Angle.cos_sub_pi, Orientation.oangle_eq_zero_iff_angle_eq_zero, Orientation.oangle_rotation_oangle_right, EuclideanGeometry.oangle_add_cyc3, Orientation.oangle_add_oangle_rev, Orientation.oangle_self, Angle.tan_sub_pi, EuclideanGeometry.oangle_sub_left, Angle.sub_coe_pi_eq_add_coe_pi, Angle.sin_eq_iff_coe_eq_or_add_eq_pi, Angle.sign_sub_pi, Orientation.oangle_rotation_self_left, Angle.sin_two_nsmul, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Angle.two_zsmul_neg_pi_div_two, Angle.two_nsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two, Orientation.rotation_neg_orientation_eq_neg, Orientation.eq_rotation_self_iff, Angle.two_zsmul_toReal_eq_two_mul, Orientation.two_zsmul_oangle_of_span_eq_of_span_eq, Collinear.two_zsmul_oangle_eq_right, Orientation.oangle_eq_iff_eq_pos_smul_rotation_or_eq_zero, Orientation.rotation_zero, Orientation.oangle_neg_left, Orientation.oangle_rotation_oangle_left, Angle.coe_sub, Angle.intCast_mul_eq_zsmul, EuclideanGeometry.oangle_add_oangle_add_oangle_eq_pi, EuclideanGeometry.oangle_eq_zero_or_eq_pi_iff_collinear, Angle.cos_eq_iff_coe_eq_or_eq_neg, Angle.two_zsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two, Orientation.oangle_zero_right, Orientation.rotation_eq_self_iff_angle_eq_zero, Orientation.oangle_rotation_right, Orientation.oangle_sub_left, Angle.sign_two_nsmul_eq_sign_iff, Orientation.rotation_trans, Orientation.continuousAt_oangle, Angle.sin_pi_div_two_sub, Angle.sin_add, Angle.toReal_injective, Angle.two_zsmul_eq_iff, Orientation.oangle_add_cyc3, EuclideanGeometry.continuousAt_oangle, Angle.two_nsmul_toReal_eq_two_mul_add_two_pi, Angle.sign_pi_add, Angle.two_nsmul_eq_pi_iff, EuclideanGeometry.oangle_self_right, Orientation.kahler_rotation_left', Orientation.oangle_eq_zero_or_eq_pi_iff_not_linearIndependent, Angle.sign_two_zsmul_eq_neg_sign_iff, Complex.continuousAt_arg_coe_angle, Complex.arg_div_coe_angle, Angle.two_zsmul_toReal_eq_two_mul_add_two_pi, Orientation.oangle_eq_iff_eq_norm_div_norm_smul_rotation_or_eq_zero, Wbtw.oangle₂₃₁_eq_zero, Angle.continuous_coe, EuclideanGeometry.Sphere.oangle_eq_pi_sub_two_zsmul_oangle_center_right, Angle.toReal_eq_zero_iff, Sbtw.oangle₃₁₂_eq_zero, Angle.sin_eq_iff_eq_or_add_eq_pi, Orientation.two_zsmul_oangle_neg_self_left, Orientation.oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq, EuclideanGeometry.angle_eq_iff_oangle_eq_neg_of_sign_eq_neg, Angle.coe_nsmul, Angle.sign_add_pi, Angle.toReal_add_of_sign_pos_sign_neg, Complex.arg_conj_coe_angle, Angle.natCast_mul_eq_nsmul, Angle.zsmul_eq_iff, Orientation.oangle_add_cyc3_neg_left, EuclideanGeometry.oangle_eq_or_eq_neg_of_angle_eq, Sbtw.oangle₁₃₂_eq_zero, Angle.eq_neg_self_iff, Sbtw.oangle₂₁₃_eq_zero, Orientation.oangle_smul_smul_self_of_nonneg, EuclideanGeometry.oangle_add_oangle_rev, Angle.neg_coe_pi, Orientation.two_zsmul_oangle_smul_right_self, Angle.two_nsmul_coe_div_two, Angle.neg_eq_self_iff, Angle.toCircle_neg, EuclideanGeometry.Sphere.two_zsmul_oangle_eq, EuclideanGeometry.Sphere.two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi, Angle.continuous_sin, Orientation.oangle_rev, Angle.sin_zero, Orientation.oangle_add_oangle_rev_neg_left, Orientation.two_zsmul_oangle_neg_right, Angle.cos_pi_div_two_sub, Orientation.two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq, EuclideanGeometry.Sphere.oangle_center_eq_two_zsmul_oangle, Angle.cos_eq_iff_eq_or_eq_neg, Orientation.two_zsmul_oangle_smul_right_of_ne_zero, Orientation.eq_iff_oangle_eq_zero_of_norm_eq, Orientation.oangle_smul_add_right_eq_zero_or_eq_pi_iff, Angle.coe_two_pi, Angle.coe_zsmul, Orientation.two_zsmul_oangle_left_of_span_eq, Orientation.two_zsmul_oangle_smul_left_self, Complex.arg_pow_coe_angle, Orientation.angle_eq_iff_oangle_eq_neg_of_sign_eq_neg, Angle.nsmul_toReal_eq_mul, Orientation.oangle_eq_neg_of_angle_eq_of_sign_eq_neg, Angle.coe_zero, Collinear.two_zsmul_oangle_eq_left, EuclideanGeometry.Cospherical.two_zsmul_oangle_eq, EuclideanGeometry.oangle_self_left, Angle.abs_toReal_add_eq_two_pi_sub_abs_toReal_add_abs_toReal, Complex.arg_inv_coe_angle, Angle.cos_neg, Angle.cos_sub_pi_div_two, Angle.two_zsmul_eq_zero_iff, EuclideanGeometry.two_zsmul_oangle_eq_of_dist_orthogonalProjection_line_eq, Angle.two_nsmul_neg_pi_div_two, Angle.tan_add_pi, Angle.sin_antiperiodic, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, Angle.two_nsmul_coe_pi, EuclideanGeometry.two_zsmul_oangle_of_vectorSpan_eq, Orientation.oangle_smul_right_self_of_nonneg, Orientation.oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real, Complex.arg_mul_coe_angle, Orientation.oangle_neg_orientation_eq_neg, Angle.sin_eq_real_sin_iff_eq_or_add_eq_pi, Orientation.oangle_sub_right, Angle.cos_antiperiodic, EuclideanGeometry.oangle_eq_neg_angle_of_sign_eq_neg_one, Orientation.two_zsmul_oangle_smul_smul_self, Angle.sin_sub_pi_div_two, EuclideanGeometry.oangle_sub_right, Wbtw.oangle₁₃₂_eq_zero, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, Angle.continuous_cos, Angle.tan_periodic, Angle.coe_pi_add_coe_pi, Orientation.oangle_eq_neg_angle_of_sign_eq_neg_one, Orientation.oangle_add_cyc3_neg_right, Complex.arg_zpow_coe_angle, Angle.tan_zero, Angle.two_nsmul_eq_iff, Orientation.two_zsmul_oangle_right_of_span_eq, Angle.two_nsmul_toReal_eq_two_mul, Angle.sign_antiperiodic, Angle.nsmul_eq_iff, Angle.toReal_zero, Angle.sin_sub_pi, Complex.arg_neg_coe_angle, Angle.coe_neg, Orientation.oangle_add_oangle_rev_neg_right
instInhabitedAngle πŸ“–CompOpβ€”
instNormedAddCommGroupAngle πŸ“–CompOp
220 mathmath: Angle.abs_toReal_neg_coe_eq_self_iff, Orientation.oangle_eq_zero_or_eq_pi_iff_right_eq_smul, Orientation.oangle_add, Angle.sign_two_zsmul_eq_sign_iff, Angle.neg_coe_abs_toReal_of_sign_nonpos, Angle.toReal_add_of_sign_eq_neg_sign, Orientation.oangle_add_swap, EuclideanGeometry.two_zsmul_oangle_of_parallel, EuclideanGeometry.oangle_eq_neg_of_angle_eq_of_sign_eq_neg, Angle.two_zsmul_eq_pi_iff, Orientation.oangle_eq_zero_iff_oangle_rev_eq_zero, Angle.sin_add_pi_div_two, Angle.cos_add, Orientation.eq_iff_norm_eq_and_oangle_eq_zero, Orientation.oangle_eq_two_zsmul_oangle_sub_of_norm_eq, Angle.cos_zero, Orientation.rotation_eq_self_iff, Angle.sign_neg_coe_nonpos_of_nonneg_of_le_pi, Orientation.two_zsmul_oangle_smul_left_of_ne_zero, EuclideanGeometry.oangle_eq_pi_sub_two_zsmul_oangle_of_dist_eq, Angle.toCircle_add, Angle.sin_eq_zero_iff, Angle.sign_neg, Orientation.neg_rotation, Sbtw.oangle_eq_add_pi_left, Orientation.eq_rotation_self_iff_angle_eq_zero, Orientation.two_zsmul_oangle_neg_left, Orientation.oangle_zero_left, EuclideanGeometry.oangle_eq_angle_or_eq_neg_angle, Angle.two_zsmul_eq_iff_eq, Angle.cos_eq_real_cos_iff_eq_or_eq_neg, EuclideanGeometry.oangle_self_left_right, Orientation.two_zsmul_oangle_neg_self_right, Orientation.oangle_neg_right, Angle.continuousAt_sign, Angle.two_zsmul_coe_div_two, Wbtw.oangle₃₁₂_eq_zero, EuclideanGeometry.oangle_rev, Angle.sign_two_nsmul_eq_neg_sign_iff, Angle.sign_pi_sub, EuclideanGeometry.oangle_eq_zero_iff_angle_eq_zero, Orientation.oangle_smul_left_self_of_nonneg, Angle.sign_eq_zero_iff, Wbtw.oangle₂₁₃_eq_zero, Orientation.rotation_rotation, Angle.two_nsmul_toReal_eq_two_mul_sub_two_pi, EuclideanGeometry.Sphere.oangle_eq_pi_sub_two_zsmul_oangle_center_left, EuclideanGeometry.oangle_add, Orientation.oangle_eq_angle_or_eq_neg_angle, EuclideanGeometry.oangle_eq_zero_iff_oangle_rev_eq_zero, Angle.sin_add_pi, Angle.sin_neg, Angle.cos_add_pi, EuclideanGeometry.oangle_add_swap, Angle.two_zsmul_coe_pi, Angle.cos_add_pi_div_two, Angle.two_nsmul_eq_zero_iff, Angle.coe_add, Angle.abs_toReal_neg, Orientation.rotation_symm, Sbtw.oangle₂₃₁_eq_zero, Sbtw.oangle_eq_add_pi_right, Orientation.oangle_eq_zero_iff_sameRay, Orientation.oangle_rotation_left, Angle.sign_zero, Angle.coe_eq_zero_iff, Angle.coe_coeHom, Angle.toReal_neg_eq_neg_toReal_iff, Angle.toCircle_zero, EuclideanGeometry.oangle_eq_zero_iff_wbtw, Angle.two_zsmul_toReal_eq_two_mul_sub_two_pi, Angle.cos_sub_pi, Orientation.oangle_eq_zero_iff_angle_eq_zero, Orientation.oangle_rotation_oangle_right, EuclideanGeometry.oangle_add_cyc3, Orientation.oangle_add_oangle_rev, Orientation.oangle_self, Angle.tan_sub_pi, EuclideanGeometry.oangle_sub_left, Angle.sub_coe_pi_eq_add_coe_pi, Angle.sin_eq_iff_coe_eq_or_add_eq_pi, Angle.sign_sub_pi, Orientation.oangle_rotation_self_left, Angle.sin_two_nsmul, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Angle.two_zsmul_neg_pi_div_two, Angle.two_nsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two, Orientation.rotation_neg_orientation_eq_neg, Orientation.eq_rotation_self_iff, Angle.two_zsmul_toReal_eq_two_mul, Orientation.two_zsmul_oangle_of_span_eq_of_span_eq, Collinear.two_zsmul_oangle_eq_right, Orientation.oangle_eq_iff_eq_pos_smul_rotation_or_eq_zero, Orientation.rotation_zero, Orientation.oangle_neg_left, Orientation.oangle_rotation_oangle_left, Angle.coe_sub, Angle.intCast_mul_eq_zsmul, EuclideanGeometry.oangle_add_oangle_add_oangle_eq_pi, EuclideanGeometry.oangle_eq_zero_or_eq_pi_iff_collinear, Angle.cos_eq_iff_coe_eq_or_eq_neg, Angle.two_zsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two, Orientation.oangle_zero_right, Orientation.rotation_eq_self_iff_angle_eq_zero, Orientation.oangle_rotation_right, Orientation.oangle_sub_left, Angle.sign_two_nsmul_eq_sign_iff, Orientation.rotation_trans, Orientation.continuousAt_oangle, Angle.sin_pi_div_two_sub, Angle.sin_add, Angle.two_zsmul_eq_iff, Orientation.oangle_add_cyc3, EuclideanGeometry.continuousAt_oangle, Angle.two_nsmul_toReal_eq_two_mul_add_two_pi, Angle.sign_pi_add, Angle.two_nsmul_eq_pi_iff, EuclideanGeometry.oangle_self_right, Orientation.kahler_rotation_left', Orientation.oangle_eq_zero_or_eq_pi_iff_not_linearIndependent, Angle.sign_two_zsmul_eq_neg_sign_iff, Complex.continuousAt_arg_coe_angle, Complex.arg_div_coe_angle, Angle.two_zsmul_toReal_eq_two_mul_add_two_pi, Orientation.oangle_eq_iff_eq_norm_div_norm_smul_rotation_or_eq_zero, Wbtw.oangle₂₃₁_eq_zero, Angle.continuous_coe, EuclideanGeometry.Sphere.oangle_eq_pi_sub_two_zsmul_oangle_center_right, Angle.toReal_eq_zero_iff, Sbtw.oangle₃₁₂_eq_zero, Angle.sin_eq_iff_eq_or_add_eq_pi, Orientation.two_zsmul_oangle_neg_self_left, Orientation.oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq, EuclideanGeometry.angle_eq_iff_oangle_eq_neg_of_sign_eq_neg, Angle.coe_nsmul, Angle.sign_add_pi, Angle.toReal_add_of_sign_pos_sign_neg, Complex.arg_conj_coe_angle, Angle.natCast_mul_eq_nsmul, Angle.zsmul_eq_iff, Orientation.oangle_add_cyc3_neg_left, EuclideanGeometry.oangle_eq_or_eq_neg_of_angle_eq, Sbtw.oangle₁₃₂_eq_zero, Angle.eq_neg_self_iff, Sbtw.oangle₂₁₃_eq_zero, Orientation.oangle_smul_smul_self_of_nonneg, EuclideanGeometry.oangle_add_oangle_rev, Angle.neg_coe_pi, Orientation.two_zsmul_oangle_smul_right_self, Angle.two_nsmul_coe_div_two, Angle.neg_eq_self_iff, Angle.toCircle_neg, EuclideanGeometry.Sphere.two_zsmul_oangle_eq, EuclideanGeometry.Sphere.two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi, Angle.continuous_sin, Orientation.oangle_rev, Angle.sin_zero, Orientation.oangle_add_oangle_rev_neg_left, Orientation.two_zsmul_oangle_neg_right, Angle.cos_pi_div_two_sub, Orientation.two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq, EuclideanGeometry.Sphere.oangle_center_eq_two_zsmul_oangle, Angle.cos_eq_iff_eq_or_eq_neg, Orientation.two_zsmul_oangle_smul_right_of_ne_zero, Orientation.eq_iff_oangle_eq_zero_of_norm_eq, Orientation.oangle_smul_add_right_eq_zero_or_eq_pi_iff, Angle.coe_two_pi, Angle.coe_zsmul, Orientation.two_zsmul_oangle_left_of_span_eq, Orientation.two_zsmul_oangle_smul_left_self, Complex.arg_pow_coe_angle, Orientation.angle_eq_iff_oangle_eq_neg_of_sign_eq_neg, Angle.nsmul_toReal_eq_mul, Orientation.oangle_eq_neg_of_angle_eq_of_sign_eq_neg, Angle.coe_zero, Collinear.two_zsmul_oangle_eq_left, EuclideanGeometry.Cospherical.two_zsmul_oangle_eq, EuclideanGeometry.oangle_self_left, Angle.abs_toReal_add_eq_two_pi_sub_abs_toReal_add_abs_toReal, Complex.arg_inv_coe_angle, Angle.cos_neg, Angle.cos_sub_pi_div_two, Angle.two_zsmul_eq_zero_iff, EuclideanGeometry.two_zsmul_oangle_eq_of_dist_orthogonalProjection_line_eq, Angle.two_nsmul_neg_pi_div_two, Angle.tan_add_pi, Angle.sin_antiperiodic, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, Angle.two_nsmul_coe_pi, EuclideanGeometry.two_zsmul_oangle_of_vectorSpan_eq, Orientation.oangle_smul_right_self_of_nonneg, Orientation.oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real, Complex.arg_mul_coe_angle, Orientation.oangle_neg_orientation_eq_neg, Angle.sin_eq_real_sin_iff_eq_or_add_eq_pi, Orientation.oangle_sub_right, Angle.cos_antiperiodic, EuclideanGeometry.oangle_eq_neg_angle_of_sign_eq_neg_one, Orientation.two_zsmul_oangle_smul_smul_self, Angle.sin_sub_pi_div_two, EuclideanGeometry.oangle_sub_right, Wbtw.oangle₁₃₂_eq_zero, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, Angle.continuous_cos, Angle.tan_periodic, Angle.coe_pi_add_coe_pi, Orientation.oangle_eq_neg_angle_of_sign_eq_neg_one, Orientation.oangle_add_cyc3_neg_right, Complex.arg_zpow_coe_angle, Angle.tan_zero, Angle.two_nsmul_eq_iff, Orientation.two_zsmul_oangle_right_of_span_eq, Angle.two_nsmul_toReal_eq_two_mul, Angle.sign_antiperiodic, Angle.nsmul_eq_iff, Angle.toReal_zero, Angle.sin_sub_pi, Complex.arg_neg_coe_angle, Angle.coe_neg, Orientation.oangle_add_oangle_rev_neg_right

Real.Angle

Definitions

NameCategoryTheorems
coeHom πŸ“–CompOp
1 mathmath: coe_coeHom
cos πŸ“–CompOp
61 mathmath: sin_add_pi_div_two, cos_add, cos_zero, Complex.arg_cos_add_sin_mul_I_coe_angle, cos_eq_real_cos_iff_eq_or_eq_neg, Orientation.norm_div_cos_oangle_add_left_of_oangle_eq_pi_div_two, abs_cos_eq_abs_sin_of_two_zsmul_add_two_zsmul_eq_pi, cos_sq_add_sin_sq, cos_add_pi, cos_add_pi_div_two, cos_nonneg_iff_abs_toReal_le_pi_div_two, coe_toCircle, Orientation.cos_oangle_sub_right_of_oangle_eq_pi_div_two, cos_sub_pi, Orientation.cos_oangle_add_left_of_oangle_eq_pi_div_two, Orientation.cos_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two, EuclideanGeometry.cos_oangle_eq_cos_angle, Complex.arg_mul_cos_add_sin_mul_I_coe_angle, sin_two_nsmul, Orientation.inner_eq_norm_mul_norm_mul_cos_oangle, abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi, Orientation.cos_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two, EuclideanGeometry.cos_oangle_left_mul_dist_of_oangle_eq_pi_div_two, Orientation.norm_div_cos_oangle_add_right_of_oangle_eq_pi_div_two, EuclideanGeometry.Sphere.dist_div_cos_oangle_center_div_two_eq_radius, cos_eq_zero_iff, EuclideanGeometry.cos_oangle_left_of_oangle_eq_pi_div_two, sin_pi_div_two_sub, sin_add, Orientation.cos_oangle_add_right_of_oangle_eq_pi_div_two, Orientation.cos_oangle_eq_cos_angle, EuclideanGeometry.Sphere.dist_div_cos_oangle_center_eq_two_mul_radius, abs_cos_eq_of_two_zsmul_eq, Orientation.rotation_eq_matrix_toLin, cos_coe, cos_toReal, tan_eq_sin_div_cos, Orientation.cos_oangle_sub_left_mul_norm_of_oangle_eq_pi_div_two, EuclideanGeometry.dist_div_cos_oangle_right_of_oangle_eq_pi_div_two, EuclideanGeometry.dist_div_cos_oangle_left_of_oangle_eq_pi_div_two, cos_pos_iff_abs_toReal_lt_pi_div_two, cos_neg_iff_pi_div_two_lt_abs_toReal, cos_pi_div_two_sub, cos_eq_iff_eq_or_eq_neg, Orientation.rotation_apply, abs_cos_eq_of_two_nsmul_eq, EuclideanGeometry.cos_oangle_right_mul_dist_of_oangle_eq_pi_div_two, cos_neg, cos_sub_pi_div_two, Orientation.cos_oangle_sub_left_of_oangle_eq_pi_div_two, Orientation.norm_div_cos_oangle_sub_right_of_oangle_eq_pi_div_two, cos_antiperiodic, Orientation.rotation_symm_apply, sin_sub_pi_div_two, continuous_cos, EuclideanGeometry.cos_oangle_right_of_oangle_eq_pi_div_two, Orientation.rotationAux_apply, Orientation.cos_oangle_add_left_mul_norm_of_oangle_eq_pi_div_two, Orientation.cos_oangle_eq_inner_div_norm_mul_norm, Orientation.norm_div_cos_oangle_sub_left_of_oangle_eq_pi_div_two, cos_coe_pi
instCircularOrder πŸ“–CompOpβ€”
instCoe πŸ“–CompOpβ€”
sign πŸ“–CompOp
61 mathmath: EuclideanGeometry.oangle_swap₁₃_sign, Orientation.oangle_sign_smul_add_right, sign_two_zsmul_eq_sign_iff, Orientation.oangle_sign_sub_left_swap, sign_neg_coe_nonpos_of_nonneg_of_le_pi, eq_iff_sign_eq_and_abs_toReal_eq, sign_neg, Wbtw.oangle_sign_eq_of_ne_left, EuclideanGeometry.oangle_sign_eq_zero_iff_collinear, Orientation.oangle_sign_sub_right, EuclideanGeometry.oangle_rotate_sign, continuousAt_sign, Orientation.oangle_sign_sub_smul_left, sign_two_nsmul_eq_neg_sign_iff, sign_pi_sub, Orientation.oangle_sign_sub_smul_right, sign_eq_zero_iff, Sbtw.oangle_sign_eq_right, sign_zero, Sbtw.oangle_sign_eq_of_sbtw, sign_coe_pi, toReal_mem_Ioo_iff_sign_pos, toReal_nonneg_iff_sign_nonneg, sign_sub_pi, Orientation.oangle_sign_neg_left, EuclideanGeometry.oangle_swap₁₂_sign, Sbtw.oangle_sign_eq, Orientation.oangle_sign_smul_left, Orientation.oangle_sign_sub_right_eq_neg, Orientation.oangle_sign_smul_add_smul_smul_add_smul, Orientation.oangle_sign_smul_sub_left, sign_two_nsmul_eq_sign_iff, Collinear.oangle_sign_of_sameRay_vsub, sign_eq_of_continuousOn, Orientation.oangle_sign_sub_left_eq_neg, AffineSubspace.SSameSide.oangle_sign_eq, sign_pi_add, Orientation.oangle_sign_sub_left, sign_two_zsmul_eq_neg_sign_iff, Wbtw.oangle_sign_eq_of_ne_right, Orientation.oangle_sign_smul_right, toReal_neg_iff_sign_neg, Orientation.oangle_sign_add_smul_left, EuclideanGeometry.oangle_swap₂₃_sign, Orientation.oangle_sign_sub_right_swap, ContinuousOn.angle_sign_comp, sign_add_pi, sign_coe_pi_div_two, Orientation.oangle_sign_add_left, Orientation.oangle_sign_neg_right, sign_toReal, sign_coe_nonneg_of_nonneg_of_le_pi, AffineSubspace.SOppSide.oangle_sign_eq_neg, Orientation.oangle_sign_smul_add_smul_right, Sbtw.oangle_sign_eq_left, Orientation.oangle_sign_add_right, Orientation.oangle_sign_smul_add_smul_left, Orientation.oangle_sign_smul_sub_right, sign_coe_neg_pi_div_two, sign_antiperiodic, Sbtw.oangle_sign_eq_of_sbtw_left
sin πŸ“–CompOp
57 mathmath: EuclideanGeometry.sin_oangle_right_mul_dist_of_oangle_eq_pi_div_two, EuclideanGeometry.sin_oangle_right_of_oangle_eq_pi_div_two, sin_add_pi_div_two, cos_add, Orientation.sin_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two, Complex.arg_cos_add_sin_mul_I_coe_angle, sin_eq_zero_iff, Orientation.sin_oangle_add_left_mul_norm_of_oangle_eq_pi_div_two, abs_cos_eq_abs_sin_of_two_zsmul_add_two_zsmul_eq_pi, EuclideanGeometry.Sphere.dist_div_sin_oangle_div_two_eq_radius, cos_sq_add_sin_sq, sin_add_pi, sin_neg, cos_add_pi_div_two, coe_toCircle, Orientation.sin_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two, EuclideanGeometry.Sphere.dist_div_sin_oangle_eq_two_mul_radius, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, Complex.arg_mul_cos_add_sin_mul_I_coe_angle, Orientation.norm_div_sin_oangle_sub_right_of_oangle_eq_pi_div_two, sin_two_nsmul, EuclideanGeometry.dist_div_sin_oangle_left_of_oangle_eq_pi_div_two, Orientation.sin_oangle_add_left_of_oangle_eq_pi_div_two, abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi, Orientation.sin_oangle_sub_left_mul_norm_of_oangle_eq_pi_div_two, Affine.Triangle.dist_div_sin_oangle_eq_two_mul_circumradius, Orientation.sin_oangle_sub_left_of_oangle_eq_pi_div_two, sin_coe_pi, sin_pi_div_two_sub, sin_add, Orientation.rotation_eq_matrix_toLin, Orientation.norm_div_sin_oangle_sub_left_of_oangle_eq_pi_div_two, sin_coe, sin_eq_iff_eq_or_add_eq_pi, Orientation.sin_oangle_add_right_of_oangle_eq_pi_div_two, tan_eq_sin_div_cos, Orientation.norm_div_sin_oangle_add_left_of_oangle_eq_pi_div_two, continuous_sin, sin_zero, cos_pi_div_two_sub, EuclideanGeometry.sin_oangle_left_of_oangle_eq_pi_div_two, Orientation.rotation_apply, Orientation.sin_oangle_sub_right_of_oangle_eq_pi_div_two, EuclideanGeometry.sin_oangle_left_mul_dist_of_oangle_eq_pi_div_two, Orientation.norm_div_sin_oangle_add_right_of_oangle_eq_pi_div_two, abs_sin_eq_of_two_zsmul_eq, EuclideanGeometry.dist_div_sin_oangle_right_of_oangle_eq_pi_div_two, cos_sub_pi_div_two, abs_sin_eq_of_two_nsmul_eq, sin_antiperiodic, Affine.Triangle.dist_div_sin_oangle_div_two_eq_circumradius, sin_eq_real_sin_iff_eq_or_add_eq_pi, Orientation.rotation_symm_apply, sin_sub_pi_div_two, sin_toReal, Orientation.rotationAux_apply, sin_sub_pi
tan πŸ“–CompOp
36 mathmath: Orientation.tan_oangle_add_left_smul_rotation_pi_div_two, EuclideanGeometry.dist_div_tan_oangle_right_of_oangle_eq_pi_div_two, Orientation.tan_oangle_add_right_smul_rotation_pi_div_two, tan_eq_of_two_nsmul_eq, EuclideanGeometry.tan_oangle_right_of_oangle_eq_pi_div_two, EuclideanGeometry.tan_oangle_left_mul_dist_of_oangle_eq_pi_div_two, Orientation.tan_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, tan_sub_pi, Orientation.norm_div_tan_oangle_add_left_of_oangle_eq_pi_div_two, Orientation.tan_oangle_add_left_mul_norm_of_oangle_eq_pi_div_two, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, tan_eq_inv_of_two_nsmul_add_two_nsmul_eq_pi, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, Orientation.tan_oangle_sub_left_of_oangle_eq_pi_div_two, EuclideanGeometry.dist_div_tan_oangle_left_of_oangle_eq_pi_div_two, EuclideanGeometry.tan_oangle_right_mul_dist_of_oangle_eq_pi_div_two, Orientation.tan_oangle_sub_left_mul_norm_of_oangle_eq_pi_div_two, tan_eq_sin_div_cos, Orientation.tan_oangle_sub_right_of_oangle_eq_pi_div_two, Orientation.norm_div_tan_oangle_sub_left_of_oangle_eq_pi_div_two, tan_coe_pi, Orientation.tan_oangle_add_left_of_oangle_eq_pi_div_two, Orientation.norm_div_tan_oangle_add_right_of_oangle_eq_pi_div_two, Orientation.tan_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two, tan_add_pi, EuclideanGeometry.tan_oangle_left_of_oangle_eq_pi_div_two, tan_eq_of_two_zsmul_eq, tan_eq_inv_of_two_zsmul_add_two_zsmul_eq_pi, Orientation.norm_div_tan_oangle_sub_right_of_oangle_eq_pi_div_two, Orientation.tan_oangle_add_right_of_oangle_eq_pi_div_two, tan_toReal, tan_periodic, tan_zero, tan_coe
toReal πŸ“–CompOp
69 mathmath: abs_toReal_neg_coe_eq_self_iff, sign_two_zsmul_eq_sign_iff, neg_coe_abs_toReal_of_sign_nonpos, toReal_add_of_sign_eq_neg_sign, EuclideanGeometry.abs_oangle_right_toReal_lt_pi_div_two_of_dist_eq, eq_iff_sign_eq_and_abs_toReal_eq, toReal_coe_eq_self_iff_mem_Ioc, abs_toReal_eq_pi_div_two_iff, toReal_eq_pi_iff, abs_toReal_le_pi, toReal_coe, sign_two_nsmul_eq_neg_sign_iff, toReal_pi, toReal_mem_Ioc, toReal_neg_pi_div_two, Complex.arg_coe_angle_eq_iff_eq_toReal, two_nsmul_toReal_eq_two_mul_sub_two_pi, toReal_coe_eq_self_iff, cos_nonneg_iff_abs_toReal_le_pi_div_two, abs_toReal_neg, neg_pi_lt_toReal, coe_abs_toReal_of_sign_nonneg, toReal_neg_eq_neg_toReal_iff, two_zsmul_toReal_eq_two_mul_sub_two_pi, toReal_inj, toReal_mem_Ioo_iff_sign_pos, toReal_nonneg_iff_sign_nonneg, toReal_pi_div_two, toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff, EuclideanGeometry.Sphere.abs_oangle_center_left_toReal_lt_pi_div_two, two_zsmul_toReal_eq_two_mul, EuclideanGeometry.Sphere.abs_oangle_center_right_toReal_lt_pi_div_two, sign_two_nsmul_eq_sign_iff, coe_toReal, toReal_injective, two_nsmul_toReal_eq_two_mul_add_two_pi, sign_two_zsmul_eq_neg_sign_iff, toReal_neg_iff_sign_neg, abs_toReal_add_abs_toReal_eq_pi_of_two_zsmul_add_eq_zero_of_sign_eq, two_zsmul_toReal_eq_two_mul_add_two_pi, toReal_eq_zero_iff, EuclideanGeometry.abs_oangle_left_toReal_lt_pi_div_two_of_dist_eq, cos_toReal, toReal_add_of_sign_pos_sign_neg, abs_toReal_coe_eq_self_iff, toIocMod_toReal, EuclideanGeometry.angle_eq_abs_oangle_toReal, EuclideanGeometry.abs_oangle_toReal_lt_pi_div_two_of_angle_eq_pi_div_two, Orientation.angle_eq_abs_oangle_toReal, cos_pos_iff_abs_toReal_lt_pi_div_two, Complex.arg_coe_angle_toReal_eq_arg, cos_neg_iff_pi_div_two_lt_abs_toReal, sign_toReal, Orientation.abs_oangle_sub_left_toReal_lt_pi_div_two, nsmul_toReal_eq_mul, abs_toReal_add_abs_toReal_eq_pi_of_two_nsmul_add_eq_zero_of_sign_eq, toReal_add_eq_toReal_add_toReal, abs_toReal_add_eq_two_pi_sub_abs_toReal_add_abs_toReal, toReal_le_pi, toReal_coe_eq_self_add_two_pi_iff, toReal_eq_pi_div_two_iff, toReal_coe_eq_self_sub_two_pi_iff, tan_toReal, sin_toReal, toReal_eq_neg_pi_div_two_iff, two_nsmul_toReal_eq_two_mul, Orientation.abs_oangle_sub_right_toReal_lt_pi_div_two, eq_iff_abs_toReal_eq_of_sign_eq, toReal_zero

Theorems

NameKindAssumesProvesValidatesDepends On
abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi πŸ“–mathematicalReal.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
coe
Real.pi
abs
Real
Real.lattice
Real.instAddGroup
cos
sin
β€”Nat.instAtLeastTwoHAddOfNat
two_nsmul_eq_iff
nsmul_sub
two_nsmul_coe_div_two
eq_sub_iff_add_eq
cos_pi_div_two_sub
cos_add_pi
abs_neg
abs_cos_eq_abs_sin_of_two_zsmul_add_two_zsmul_eq_pi πŸ“–mathematicalReal.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
coe
Real.pi
abs
Real
Real.lattice
Real.instAddGroup
cos
sin
β€”abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi
two_zsmul
abs_cos_eq_of_two_nsmul_eq πŸ“–mathematicalReal.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
abs
Real
Real.lattice
Real.instAddGroup
cos
β€”two_nsmul_eq_iff
cos_add_pi
abs_neg
abs_cos_eq_of_two_zsmul_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
abs
Real
Real.lattice
Real.instAddGroup
cos
β€”abs_cos_eq_of_two_nsmul_eq
two_zsmul
abs_sin_eq_of_two_nsmul_eq πŸ“–mathematicalReal.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
abs
Real
Real.lattice
Real.instAddGroup
sin
β€”two_nsmul_eq_iff
sin_add_pi
abs_neg
abs_sin_eq_of_two_zsmul_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
abs
Real
Real.lattice
Real.instAddGroup
sin
β€”abs_sin_eq_of_two_nsmul_eq
two_zsmul
abs_toReal_add_abs_toReal_eq_pi_of_two_nsmul_add_eq_zero_of_sign_eq πŸ“–mathematicalReal.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
sign
Real
Real.instAdd
abs
Real.lattice
Real.instAddGroup
toReal
Real.pi
β€”two_nsmul_eq_zero_iff
add_eq_zero_iff_eq_neg
sign_neg
neg_zero
abs_eq
Real.instIsOrderedAddMonoid
Real.pi_nonneg
Nat.instAtLeastTwoHAddOfNat
angle_eq_iff_two_pi_dvd_sub
coe_add
coe_toReal
IsStrictOrderedRing.int_mem_Icc_of_mul_mem_Ioo
Real.instIsStrictOrderedRing
Real.two_pi_pos
sub_eq_iff_eq_add
Int.instCharZero
CharP.cast_eq_zero
CharP.ofCharZero
add_zero
Int.cast_neg
Int.cast_one
mul_neg
mul_one
Nat.cast_one
neg_add_cancel
Int.cast_zero
MulZeroClass.mul_zero
zero_add
abs_toReal_add_abs_toReal_eq_pi_of_two_zsmul_add_eq_zero_of_sign_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
sign
Real
Real.instAdd
abs
Real.lattice
Real.instAddGroup
toReal
Real.pi
β€”abs_toReal_add_abs_toReal_eq_pi_of_two_nsmul_add_eq_zero_of_sign_eq
two_nsmul
two_zsmul
abs_toReal_add_eq_two_pi_sub_abs_toReal_add_abs_toReal πŸ“–mathematicalsignabs
Real
Real.lattice
Real.instAddGroup
toReal
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
SignType.trichotomy
neg_add
sign_neg
neg_injective
abs_toReal_neg
abs_toReal_coe_eq_self_iff πŸ“–mathematicalβ€”abs
Real
Real.lattice
Real.instAddGroup
toReal
coe
Real.instLE
Real.instZero
Real.pi
β€”abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_toReal_le_pi
abs_eq_self
toReal_coe_eq_self_iff
LT.lt.trans_le
Left.neg_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Real.pi_pos
abs_toReal_eq_pi_div_two_iff πŸ“–mathematicalβ€”abs
Real
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
coe
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
abs_eq
Real.instIsOrderedAddMonoid
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LT.lt.le
Real.pi_pos
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
neg_div
toReal_eq_pi_div_two_iff
toReal_eq_neg_pi_div_two_iff
abs_toReal_le_pi πŸ“–mathematicalβ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
toReal
Real.pi
β€”abs_le
Real.instIsOrderedAddMonoid
LT.lt.le
neg_pi_lt_toReal
toReal_le_pi
abs_toReal_neg πŸ“–mathematicalβ€”abs
Real
Real.lattice
Real.instAddGroup
toReal
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”eq_or_ne
neg_coe_pi
toReal_pi
toReal_neg_eq_neg_toReal_iff
abs_neg
abs_toReal_neg_coe_eq_self_iff πŸ“–mathematicalβ€”abs
Real
Real.lattice
Real.instAddGroup
toReal
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
coe
Real.instLE
Real.instZero
Real.pi
β€”abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_toReal_le_pi
neg_coe_pi
toReal_pi
LT.lt.le
Real.pi_pos
coe_neg
toReal_coe_eq_self_iff
neg_lt_neg
lt_of_le_of_ne
LE.le.trans
neg_nonpos
abs_neg
abs_eq_self
angle_eq_iff_two_pi_dvd_sub πŸ“–mathematicalβ€”coe
Real
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
coe.eq_1
QuotientAddGroup.eq
AddSubgroup.zmultiples_eq_closure
sub_eq_neg_add
zsmul_eq_mul'
coe_abs_toReal_of_sign_nonneg πŸ“–mathematicalSignType
SignType.instLE
SignType.instZero
sign
coe
abs
Real
Real.lattice
Real.instAddGroup
toReal
β€”abs_eq_self
Real.instIsOrderedAddMonoid
toReal_nonneg_iff_sign_nonneg
coe_toReal
coe_add πŸ“–mathematicalβ€”coe
Real
Real.instAdd
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”β€”
coe_coeHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Real
Real.Angle
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddMonoidHom.instFunLike
coeHom
coe
β€”β€”
coe_eq_zero_iff πŸ“–mathematicalβ€”coe
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”AddCircle.coe_eq_zero_iff
coe_neg πŸ“–mathematicalβ€”coe
Real
Real.instNeg
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”β€”
coe_nsmul πŸ“–mathematicalβ€”coe
Real
AddMonoid.toNatSMul
Real.instAddMonoid
Real.Angle
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”β€”
coe_pi_add_coe_pi πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”two_nsmul
two_nsmul_coe_pi
coe_sub πŸ“–mathematicalβ€”coe
Real
Real.instSub
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”β€”
coe_toIcoMod πŸ“–mathematicalβ€”coe
toIcoMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
angle_eq_iff_two_pi_dvd_sub
toIcoMod_sub_self
zsmul_eq_mul
mul_comm
coe_toIocMod πŸ“–mathematicalβ€”coe
toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
angle_eq_iff_two_pi_dvd_sub
toIocMod_sub_self
zsmul_eq_mul
mul_comm
coe_toReal πŸ“–mathematicalβ€”coe
toReal
β€”induction_on
coe_toIocMod
coe_two_pi πŸ“–mathematicalβ€”coe
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Nat.instAtLeastTwoHAddOfNat
angle_eq_iff_two_pi_dvd_sub
sub_zero
Int.cast_one
mul_one
coe_zero πŸ“–mathematicalβ€”coe
Real
Real.instZero
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”β€”
coe_zsmul πŸ“–mathematicalβ€”coe
Real
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
Real.Angle
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”β€”
continuousAt_sign πŸ“–mathematicalβ€”ContinuousAt
Real.Angle
SignType
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
instTopologicalSpaceSignType
sign
β€”ContinuousAt.comp
continuousAt_sign_of_ne_zero
instOrderTopologyReal
sin_ne_zero_iff
Continuous.continuousAt
continuous_sin
continuous_coe πŸ“–mathematicalβ€”Continuous
Real
Real.Angle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
coe
β€”continuous_quotient_mk'
continuous_cos πŸ“–mathematicalβ€”Continuous
Real.Angle
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
Real.pseudoMetricSpace
cos
β€”Continuous.quotient_liftOn'
Real.continuous_cos
Real.cos_periodic
continuous_sin πŸ“–mathematicalβ€”Continuous
Real.Angle
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
Real.pseudoMetricSpace
sin
β€”Continuous.quotient_liftOn'
Real.continuous_sin
Real.sin_periodic
cos_add πŸ“–mathematicalβ€”cos
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instSub
Real.instMul
sin
β€”induction_on
Real.cos_add
cos_add_pi πŸ“–mathematicalβ€”cos
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
Real
Real.instNeg
β€”cos_antiperiodic
cos_add_pi_div_two πŸ“–mathematicalβ€”cos
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
sin
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
Real.cos_add_pi_div_two
cos_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Real.Angle
Real
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instNeg
cos
coe
Real.pi
β€”induction_on
Real.cos_antiperiodic
cos_coe πŸ“–mathematicalβ€”cos
coe
Real.cos
β€”β€”
cos_coe_pi πŸ“–mathematicalβ€”cos
coe
Real.pi
Real
Real.instNeg
Real.instOne
β€”cos_coe
Real.cos_pi
cos_eq_iff_coe_eq_or_eq_neg πŸ“–mathematicalβ€”Real.cos
coe
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Nat.instAtLeastTwoHAddOfNat
Real.sin_eq_zero_iff
two_ne_zero'
CharZero.NeZero.two
RCLike.charZero_rclike
neg_eq_zero
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.cos_sub_cos
sub_eq_zero
sub_eq_iff_eq_add
eq_div_iff_mul_eq
coe_sub
eq_neg_iff_add_eq_zero
sub_add_cancel
mul_assoc
intCast_mul_eq_zsmul
mul_comm
coe_two_pi
zsmul_zero
eq_sub_iff_add_eq
coe_add
zero_add
angle_eq_iff_two_pi_dvd_sub
coe_neg
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
Real.sin_int_mul_pi
MulZeroClass.mul_zero
sub_neg_eq_add
MulZeroClass.zero_mul
cos_eq_iff_eq_or_eq_neg πŸ“–mathematicalβ€”cos
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”induction_on
cos_eq_real_cos_iff_eq_or_eq_neg
cos_eq_real_cos_iff_eq_or_eq_neg πŸ“–mathematicalβ€”cos
Real.cos
coe
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”induction_on
cos_eq_iff_coe_eq_or_eq_neg
cos_eq_zero_iff πŸ“–mathematicalβ€”cos
Real
Real.instZero
coe
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Real.cos_pi_div_two
cos_coe
cos_eq_iff_eq_or_eq_neg
coe_neg
neg_div
cos_neg πŸ“–mathematicalβ€”cos
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”induction_on
Real.cos_neg
cos_neg_iff_pi_div_two_lt_abs_toReal πŸ“–mathematicalβ€”Real
Real.instLT
cos
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
abs
Real.lattice
Real.instAddGroup
toReal
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
Nat.instAtLeastTwoHAddOfNat
cos_nonneg_iff_abs_toReal_le_pi_div_two
cos_nonneg_iff_abs_toReal_le_pi_div_two πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
cos
abs
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
toReal_mem_Ioc
cos_toReal
Real.cos_abs
cos_pi_div_two_sub πŸ“–mathematicalβ€”cos
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
Real.cos_pi_div_two_sub
cos_pos_iff_abs_toReal_lt_pi_div_two πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
cos
abs
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
lt_iff_le_and_ne
cos_nonneg_iff_abs_toReal_le_pi_div_two
Mathlib.Tactic.Contrapose.contrapose_iffβ‚„
abs_toReal_eq_pi_div_two_iff
cos_eq_zero_iff
cos_sin_inj πŸ“–mathematicalReal.cos
Real.sin
coeβ€”cos_eq_iff_coe_eq_or_eq_neg
sin_eq_iff_coe_eq_or_add_eq_pi
QuotientAddGroup.leftRel_apply
Quotient.exact'
eq_neg_iff_add_eq_zero
RCLike.charZero_rclike
Int.cast_add
Int.cast_mul
Int.cast_ofNat
Int.cast_one
Int.cast_zero
sub_neg_eq_add
ne_of_gt
Real.pi_pos
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sub_mul
mul_assoc
zsmul_eq_mul
sub_eq_zero
add_zero
neg_one_mul
add_comm
one_ne_zero
cos_sq_add_sin_sq πŸ“–mathematicalβ€”Real
Real.instAdd
Monoid.toNatPow
Real.instMonoid
cos
sin
Real.instOne
β€”induction_on
Real.cos_sq_add_sin_sq
cos_sub_pi πŸ“–mathematicalβ€”cos
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
Real
Real.instNeg
β€”Function.Antiperiodic.sub_eq
cos_antiperiodic
cos_sub_pi_div_two πŸ“–mathematicalβ€”cos
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
Real.cos_sub_pi_div_two
cos_toReal πŸ“–mathematicalβ€”Real.cos
toReal
cos
β€”coe_toReal
cos_coe
cos_zero πŸ“–mathematicalβ€”cos
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.instOne
β€”coe_zero
cos_coe
Real.cos_zero
eq_add_pi_of_two_zsmul_eq_of_sign_eq_neg πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
sign
SignType
SignType.instNeg
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
β€”two_zsmul_eq_iff
eq_iff_abs_toReal_eq_of_sign_eq πŸ“–mathematicalsignabs
Real
Real.lattice
Real.instAddGroup
toReal
β€”eq_iff_sign_eq_and_abs_toReal_eq
eq_iff_sign_eq_and_abs_toReal_eq πŸ“–mathematicalβ€”sign
abs
Real
Real.lattice
Real.instAddGroup
toReal
β€”β€”
eq_neg_self_iff πŸ“–mathematicalβ€”Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
NegZeroClass.toZero
coe
Real.pi
β€”add_eq_zero_iff_eq_neg
two_nsmul
two_nsmul_eq_zero_iff
induction_on πŸ“–β€”coeβ€”β€”Quotient.inductionOn'
intCast_mul_eq_zsmul πŸ“–mathematicalβ€”coe
Real
Real.instMul
Real.instIntCast
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”zsmul_eq_mul
AddMonoidHom.map_zsmul
natCast_mul_eq_nsmul πŸ“–mathematicalβ€”coe
Real
Real.instMul
Real.instNatCast
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”nsmul_eq_mul
AddMonoidHom.map_nsmul
ne_neg_self_iff πŸ“–β€”β€”β€”β€”Iff.not
eq_neg_self_iff
neg_coe_abs_toReal_of_sign_nonpos πŸ“–mathematicalSignType
SignType.instLE
sign
SignType.instZero
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
coe
abs
Real
Real.lattice
Real.instAddGroup
toReal
β€”SignType.nonpos_iff
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
toReal_neg_iff_sign_neg
coe_neg
neg_neg
coe_toReal
sign_eq_zero_iff
toReal_zero
abs_zero
neg_zero
toReal_pi
abs_of_pos
Real.pi_pos
neg_coe_pi
neg_coe_pi πŸ“–mathematicalβ€”Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
β€”coe_neg
Nat.instAtLeastTwoHAddOfNat
angle_eq_iff_two_pi_dvd_sub
sub_eq_add_neg
two_mul
Int.cast_neg
Int.cast_one
mul_neg
mul_one
neg_add_rev
neg_eq_self_iff πŸ“–mathematicalβ€”Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
NegZeroClass.toZero
coe
Real.pi
β€”eq_neg_self_iff
neg_ne_self_iff πŸ“–β€”β€”β€”β€”Iff.not
neg_eq_self_iff
neg_pi_div_two_ne_zero πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
toReal_injective
toReal_neg_pi_div_two
toReal_zero
div_ne_zero
neg_ne_zero
Real.pi_ne_zero
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
neg_pi_lt_toReal πŸ“–mathematicalβ€”Real
Real.instLT
Real.instNeg
Real.pi
toReal
β€”induction_on
left_lt_toIocMod
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.two_pi_pos
nsmul_eq_iff πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”QuotientAddGroup.zmultiples_nsmul_eq_nsmul_iff
RCLike.charZero_rclike
nsmul_toReal_eq_mul πŸ“–mathematicalβ€”toReal
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instMul
Real.instNatCast
Set
Set.instMembership
Set.Ioc
Real.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
β€”coe_toReal
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
coe_nsmul
nsmul_eq_mul
toReal_coe_eq_self_iff
Set.mem_Ioc
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
le_div_iffβ‚€'
pi_div_two_ne_zero πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
toReal_injective
toReal_pi_div_two
toReal_zero
div_ne_zero
Real.pi_ne_zero
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
pi_ne_zero πŸ“–β€”β€”β€”β€”toReal_injective
toReal_pi
toReal_zero
Real.pi_ne_zero
sign_add_pi πŸ“–mathematicalβ€”sign
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
SignType
SignType.instNeg
β€”sign_antiperiodic
sign_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Real.Angle
SignType
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SignType.instNeg
sign
coe
Real.pi
β€”sign.eq_1
sin_add_pi
Left.sign_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sign_coe_neg_pi_div_two πŸ“–mathematicalβ€”sign
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
SignType
SignType.instNeg
SignType.instOne
β€”Nat.instAtLeastTwoHAddOfNat
sign.eq_1
sin_coe
neg_div
Real.sin_neg
Real.sin_pi_div_two
Left.sign_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sign_one
Real.instIsOrderedRing
Real.instNontrivial
sign_coe_nonneg_of_nonneg_of_le_pi πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.pi
SignType
SignType.instLE
SignType.instZero
sign
coe
β€”sign.eq_1
sign_nonneg_iff
Real.sin_nonneg_of_nonneg_of_le_pi
sign_coe_pi πŸ“–mathematicalβ€”sign
coe
Real.pi
SignType
SignType.instZero
β€”sign.eq_1
sin_coe_pi
sign_zero
sign_coe_pi_div_two πŸ“–mathematicalβ€”sign
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
SignType
SignType.instOne
β€”Nat.instAtLeastTwoHAddOfNat
sign.eq_1
sin_coe
Real.sin_pi_div_two
sign_one
Real.instIsOrderedRing
Real.instNontrivial
sign_eq_of_continuousOn πŸ“–mathematicalIsConnected
ContinuousOn
Real.Angle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
Set
Set.instMembership
signβ€”IsPreconnected.subsingleton
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologySignType
IsConnected.isPreconnected
IsConnected.image
ContinuousOn.angle_sign_comp
Set.mem_image_of_mem
sign_eq_zero_iff πŸ“–mathematicalβ€”sign
SignType
SignType.instZero
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
β€”sign.eq_1
sign_eq_zero_iff
sin_eq_zero_iff
sign_ne_zero_iff πŸ“–β€”β€”β€”β€”sign_eq_zero_iff
sign_neg πŸ“–mathematicalβ€”sign
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
SignType
SignType.instNeg
β€”sin_neg
Left.sign_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sign_neg_coe_nonpos_of_nonneg_of_le_pi πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.pi
SignType
SignType.instLE
sign
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
coe
SignType.instZero
β€”sign.eq_1
sign_nonpos_iff
sin_neg
Left.neg_nonpos_iff
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sin_nonneg_of_nonneg_of_le_pi
sign_pi_add πŸ“–mathematicalβ€”sign
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
SignType
SignType.instNeg
β€”add_comm
sign_add_pi
sign_pi_sub πŸ“–mathematicalβ€”sign
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
β€”Function.Antiperiodic.sub_eq'
sign_antiperiodic
sign_neg
neg_neg
sign_sub_pi πŸ“–mathematicalβ€”sign
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
SignType
SignType.instNeg
β€”Function.Antiperiodic.sub_eq
sign_antiperiodic
sign_toReal πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Real
SignType
Real.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
Real.instZero
Real.decidableLT
toReal
sign
β€”lt_trichotomy
sign_neg
toReal_neg_iff_sign_neg
sign_zero
Real.sin_zero
sign.eq_1
sin_toReal
sign_pos
Real.sin_pos_of_pos_of_lt_pi
LE.le.lt_of_ne
toReal_le_pi
Iff.not
toReal_eq_pi_iff
sign_two_nsmul_eq_neg_sign_iff πŸ“–mathematicalβ€”sign
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SignType
SignType.instNeg
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
abs
Real.lattice
Real.instAddGroup
toReal
β€”Nat.instAtLeastTwoHAddOfNat
smul_add
two_nsmul_coe_pi
add_zero
sign_add_pi
AddRightCancelSemigroup.toIsRightCancelAdd
cos_add_pi
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sign_two_nsmul_eq_sign_iff
sign_two_nsmul_eq_sign_iff πŸ“–mathematicalβ€”sign
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sin_two_nsmul
nsmul_eq_mul
sign_mul
Real.instIsStrictOrderedRing
sign_pos
Real.instIsOrderedRing
Real.instNontrivial
one_mul
IsCancelMulZero.toIsLeftCancelMulZero
GCDMonoid.toIsCancelMulZero
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.pi_pos
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
sign_two_zsmul_eq_neg_sign_iff πŸ“–mathematicalβ€”sign
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
SignType
SignType.instNeg
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
abs
Real.lattice
Real.instAddGroup
toReal
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
sign_two_nsmul_eq_neg_sign_iff
sign_two_zsmul_eq_sign_iff πŸ“–mathematicalβ€”sign
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
sign_two_nsmul_eq_sign_iff
sign_zero πŸ“–mathematicalβ€”sign
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
SignType
SignType.instZero
β€”sign.eq_1
sin_zero
sign_zero
sin_add πŸ“–mathematicalβ€”sin
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instAdd
Real.instMul
cos
β€”induction_on
Real.sin_add
sin_add_pi πŸ“–mathematicalβ€”sin
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
Real
Real.instNeg
β€”sin_antiperiodic
sin_add_pi_div_two πŸ“–mathematicalβ€”sin
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
Real.sin_add_pi_div_two
sin_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Real.Angle
Real
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instNeg
sin
coe
Real.pi
β€”induction_on
Real.sin_antiperiodic
sin_coe πŸ“–mathematicalβ€”sin
coe
Real.sin
β€”β€”
sin_coe_pi πŸ“–mathematicalβ€”sin
coe
Real.pi
Real
Real.instZero
β€”sin_coe
Real.sin_pi
sin_eq_iff_coe_eq_or_add_eq_pi πŸ“–mathematicalβ€”Real.sin
coe
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
cos_eq_iff_coe_eq_or_eq_neg
Real.cos_pi_div_two_sub
coe_sub
sub_eq_zero
sub_sub
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
coe_add
sub_add_eq_add_sub
add_sub
eq_neg_iff_add_eq_zero
angle_eq_iff_two_pi_dvd_sub
eq_sub_iff_add_eq
Real.sin_sub_sin
mul_assoc
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero'
mul_comm
Real.sin_int_mul_pi
MulZeroClass.mul_zero
MulZeroClass.zero_mul
sub_eq_iff_eq_add
sub_add
add_div
Real.cos_add_pi_div_two
neg_zero
sin_eq_iff_eq_or_add_eq_pi πŸ“–mathematicalβ€”sin
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
β€”induction_on
sin_eq_real_sin_iff_eq_or_add_eq_pi
sin_eq_real_sin_iff_eq_or_add_eq_pi πŸ“–mathematicalβ€”sin
Real.sin
coe
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.pi
β€”induction_on
sin_eq_iff_coe_eq_or_add_eq_pi
sin_eq_zero_iff πŸ“–mathematicalβ€”sin
Real
Real.instZero
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
β€”sin_zero
sin_eq_iff_eq_or_add_eq_pi
add_zero
sin_ne_zero_iff πŸ“–β€”β€”β€”β€”sin_eq_zero_iff
sin_neg πŸ“–mathematicalβ€”sin
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.instNeg
β€”induction_on
Real.sin_neg
sin_pi_div_two_sub πŸ“–mathematicalβ€”sin
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
Real.sin_pi_div_two_sub
sin_sub_pi πŸ“–mathematicalβ€”sin
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
Real
Real.instNeg
β€”Function.Antiperiodic.sub_eq
sin_antiperiodic
sin_sub_pi_div_two πŸ“–mathematicalβ€”sin
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
cos
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
Real.sin_sub_pi_div_two
sin_toReal πŸ“–mathematicalβ€”Real.sin
toReal
sin
β€”coe_toReal
sin_coe
sin_two_nsmul πŸ“–mathematicalβ€”sin
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instAddMonoid
Real.instMul
cos
β€”two_nsmul
sin_add
mul_comm
nsmul_eq_mul
two_mul
sin_zero πŸ“–mathematicalβ€”sin
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.instZero
β€”coe_zero
sin_coe
Real.sin_zero
sub_coe_pi_eq_add_coe_pi πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”sub_eq_add_neg
neg_coe_pi
sub_ne_pi_of_sign_eq_of_sign_ne_zero πŸ“–β€”signβ€”β€”add_sub_cancel
sign_add_pi
tan_add_pi πŸ“–mathematicalβ€”tan
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
β€”tan_periodic
tan_coe πŸ“–mathematicalβ€”tan
coe
Real.tan
β€”tan.eq_1
sin_coe
cos_coe
Real.tan_eq_sin_div_cos
tan_coe_pi πŸ“–mathematicalβ€”tan
coe
Real.pi
Real
Real.instZero
β€”tan_coe
Real.tan_pi
tan_eq_inv_of_two_nsmul_add_two_nsmul_eq_pi πŸ“–mathematicalReal.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
coe
Real.pi
tan
Real
Real.instInv
β€”induction_on
Nat.instAtLeastTwoHAddOfNat
angle_eq_iff_two_pi_dvd_sub
two_mul
two_nsmul
coe_nsmul
coe_add
smul_add
tan_coe
Real.tan_pi_div_two_sub
mul_comm
inv_mul_eq_div
mul_inv_cancel_leftβ‚€
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
eq_sub_iff_add_eq'
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
two_ne_zero'
mul_add
Distrib.leftDistribClass
mul_assoc
sub_eq_iff_eq_add
add_sub_assoc
add_comm
Function.Periodic.int_mul
Real.tan_periodic
tan_eq_inv_of_two_zsmul_add_two_zsmul_eq_pi πŸ“–mathematicalReal.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
coe
Real.pi
tan
Real
Real.instInv
β€”tan_eq_inv_of_two_nsmul_add_two_nsmul_eq_pi
two_zsmul
tan_eq_of_two_nsmul_eq πŸ“–mathematicalReal.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
tanβ€”two_nsmul_eq_iff
tan_add_pi
tan_eq_of_two_zsmul_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
tanβ€”tan_eq_of_two_nsmul_eq
two_zsmul
tan_eq_sin_div_cos πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
sin
cos
β€”β€”
tan_periodic πŸ“–mathematicalβ€”Function.Periodic
Real.Angle
Real
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
tan
coe
Real.pi
β€”induction_on
coe_add
tan_coe
Real.tan_periodic
tan_sub_pi πŸ“–mathematicalβ€”tan
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
β€”Function.Periodic.sub_eq
tan_periodic
tan_toReal πŸ“–mathematicalβ€”Real.tan
toReal
tan
β€”coe_toReal
tan_coe
tan_zero πŸ“–mathematicalβ€”tan
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.instZero
β€”coe_zero
tan_coe
Real.tan_zero
toIocMod_toReal πŸ“–mathematicalβ€”toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
toReal
β€”induction_on
Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
toReal_coe
toIocMod_toIocMod
toReal_add_eq_toReal_add_toReal πŸ“–mathematicalsign
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
toReal
Real
Real.instAdd
β€”SignType.trichotomy
toReal_add_of_sign_eq_neg_sign
neg_coe_pi
sign_neg
neg_neg
add_sub_cancel_left
toReal_neg_eq_neg_toReal_iff
toReal_add_of_sign_eq_neg_sign πŸ“–mathematicalsign
SignType
SignType.instNeg
toReal
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instAdd
β€”SignType.trichotomy
toReal_add_of_sign_pos_sign_neg πŸ“–mathematicalsign
SignType
SignType.instOne
SignType.instNeg
toReal
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instAdd
β€”toReal_coe_eq_self_iff
coe_toReal
toReal_coe πŸ“–mathematicalβ€”toReal
coe
toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
β€”β€”
toReal_coe_eq_self_add_two_pi_iff πŸ“–mathematicalβ€”toReal
coe
Real
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsInt.neg_to_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isintCast
Mathlib.Meta.NormNum.isInt_neg
neg_mul
sub_neg_eq_add
Mathlib.Meta.NormNum.isInt_sub
Nat.cast_one
Mathlib.Meta.NormNum.isInt_add
one_mul
toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff
toReal_coe_eq_self_iff πŸ“–mathematicalβ€”toReal
coe
Real
Real.instLT
Real.instNeg
Real.pi
Real.instLE
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
toReal_coe
toIocMod_eq_self
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
toReal_coe_eq_self_iff_mem_Ioc πŸ“–mathematicalβ€”toReal
coe
Real
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
β€”toReal_coe_eq_self_iff
Set.mem_Ioc
toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff πŸ“–mathematicalβ€”toReal
coe
Real
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instIntCast
Real.pi
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instOne
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
sub_zero
zsmul_zero
coe_two_pi
coe_zsmul
coe_sub
zsmul_eq_mul
mul_assoc
mul_comm
toReal_coe_eq_self_iff
Set.mem_Ioc
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_of_not_gt
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
toReal_coe_eq_self_sub_two_pi_iff πŸ“–mathematicalβ€”toReal
coe
Real
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Set
Set.instMembership
Set.Ioc
Real.instPreorder
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Nat.cast_one
one_mul
Mathlib.Meta.NormNum.isNat_add
toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff
toReal_eq_neg_pi_div_two_iff πŸ“–mathematicalβ€”toReal
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
coe
β€”Nat.instAtLeastTwoHAddOfNat
toReal_neg_pi_div_two
toReal_eq_pi_div_two_iff πŸ“–mathematicalβ€”toReal
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
coe
β€”Nat.instAtLeastTwoHAddOfNat
toReal_pi_div_two
toReal_eq_pi_iff πŸ“–mathematicalβ€”toReal
Real.pi
coe
β€”toReal_pi
toReal_eq_zero_iff πŸ“–mathematicalβ€”toReal
Real
Real.instZero
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”toReal_zero
toReal_inj πŸ“–mathematicalβ€”toRealβ€”toReal_injective
toReal_injective πŸ“–mathematicalβ€”Real.Angle
Real
toReal
β€”induction_on
Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
zsmul_eq_mul
mul_comm
toReal_le_pi πŸ“–mathematicalβ€”Real
Real.instLE
toReal
Real.pi
β€”induction_on
Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
toIocMod_le_right
toReal_mem_Ioc πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
toReal
β€”neg_pi_lt_toReal
toReal_le_pi
toReal_mem_Ioo_iff_sign_pos πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.pi
toReal
sign
SignType
SignType.instOne
β€”eq_or_ne
toReal_pi
sign_coe_pi
NeZero.one
GroupWithZero.toNontrivial
sign_toReal
LE.le.lt_of_ne
toReal_le_pi
Iff.not
toReal_eq_pi_iff
toReal_neg_eq_neg_toReal_iff πŸ“–mathematicalβ€”toReal
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.instNeg
β€”coe_toReal
coe_neg
toReal_coe_eq_self_iff
toReal_pi
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
LE.le.lt_of_ne
toReal_le_pi
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
neg_pi_lt_toReal
toReal_neg_iff_sign_neg πŸ“–mathematicalβ€”Real
Real.instLT
toReal
Real.instZero
sign
SignType
SignType.instNeg
SignType.instOne
β€”sign.eq_1
sin_toReal
sign_eq_neg_one_iff
toReal_neg_pi_div_two πŸ“–mathematicalβ€”toReal
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
toReal_coe_eq_self_iff
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.neg_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.pi_pos
le_of_not_gt
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
toReal_nonneg_iff_sign_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
toReal
SignType
SignType.instLE
SignType.instZero
sign
β€”β€”
toReal_pi πŸ“–mathematicalβ€”toReal
coe
Real.pi
β€”toReal_coe_eq_self_iff
Left.neg_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.pi_pos
le_refl
toReal_pi_div_two πŸ“–mathematicalβ€”toReal
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
toReal_coe_eq_self_iff
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.pi_pos
le_of_not_gt
Mathlib.Tactic.Linarith.add_neg
toReal_zero πŸ“–mathematicalβ€”toReal
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.instZero
β€”coe_zero
toReal_coe_eq_self_iff
Left.neg_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.pi_pos
LT.lt.le
two_nsmul_coe_div_two πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
coe_nsmul
two_nsmul
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
two_nsmul_coe_pi πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”coe_two_pi
two_nsmul_eq_iff πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
coe
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
two_nsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
cos_add_pi
two_nsmul_eq_pi_iff πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
two_nsmul
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
coe_nsmul
two_nsmul_eq_iff
add_comm
coe_add
sub_eq_zero
coe_sub
neg_div
sub_neg_eq_add
add_assoc
two_mul
coe_two_pi
two_nsmul_eq_zero_iff πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
coe
Real.pi
β€”nsmul_zero
zero_add
two_nsmul_eq_iff
two_nsmul_ne_zero_iff πŸ“–β€”β€”β€”β€”two_nsmul_eq_zero_iff
two_nsmul_neg_pi_div_two πŸ“–mathematicalβ€”Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
two_nsmul_coe_div_two
coe_neg
neg_coe_pi
two_nsmul_toReal_eq_two_mul πŸ“–mathematicalβ€”toReal
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.Ioc
Real.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
nsmul_toReal_eq_mul
two_ne_zero
two_nsmul_toReal_eq_two_mul_add_two_pi πŸ“–mathematicalβ€”toReal
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
coe_toReal
coe_nsmul
two_nsmul
two_mul
toReal_coe_eq_self_add_two_pi_iff
Set.mem_Ioc
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.neg_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
lt_of_not_ge
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Linarith.add_neg
Real.pi_pos
neg_pi_lt_toReal
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
zero_lt_two'
Real.instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
two_nsmul_toReal_eq_two_mul_sub_two_pi πŸ“–mathematicalβ€”toReal
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
coe_toReal
coe_nsmul
two_nsmul
two_mul
toReal_coe_eq_self_sub_two_pi_iff
Set.mem_Ioc
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
zero_lt_two'
Real.instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_not_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_neg
Real.pi_pos
toReal_le_pi
two_zsmul_coe_div_two πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
coe_zsmul
two_zsmul
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
two_zsmul_coe_pi πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Nat.instAtLeastTwoHAddOfNat
Int.cast_ofNat
coe_two_pi
two_zsmul_eq_iff πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
coe
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
zsmul_eq_iff
two_ne_zero
zero_smul
add_zero
one_smul
Int.cast_two
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
CharZero.NeZero.two
RCLike.charZero_rclike
two_zsmul_eq_iff_eq πŸ“–mathematicalsignReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”two_zsmul_eq_iff
sign_add_pi
AddLeftCancelSemigroup.toIsLeftCancelAdd
two_zsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul_eq_iff_eq_of_abs_toReal_lt_pi_div_two
two_zsmul_eq_pi_iff πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real.pi
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
two_nsmul_eq_pi_iff
two_zsmul_eq_zero_iff πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
coe
Real.pi
β€”two_zsmul
two_zsmul_ne_zero_iff πŸ“–β€”β€”β€”β€”two_zsmul_eq_zero_iff
two_zsmul_neg_pi_div_two πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
two_nsmul_neg_pi_div_two
two_zsmul_toReal_eq_two_mul πŸ“–mathematicalβ€”toReal
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.Ioc
Real.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
two_nsmul_toReal_eq_two_mul
two_zsmul_toReal_eq_two_mul_add_two_pi πŸ“–mathematicalβ€”toReal
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
Real
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
two_nsmul_toReal_eq_two_mul_add_two_pi
two_zsmul_toReal_eq_two_mul_sub_two_pi πŸ“–mathematicalβ€”toReal
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
Real
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
two_zsmul
two_nsmul
two_nsmul_toReal_eq_two_mul_sub_two_pi
zsmul_eq_iff πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instIntCast
β€”QuotientAddGroup.zmultiples_zsmul_eq_zsmul_iff
RCLike.charZero_rclike

---

← Back to Index