arctan π | CompOp | 108 mathmath: arctan_eq_arccos, differentiable_arctan, sin_arctan, deriv_arctan, Orientation.oangle_add_left_smul_rotation_pi_div_two, Complex.ofReal_arctan, arctan_eq_arcsin, arctan_nonneg, sin_arctan_nonneg, arctan_pos, derivWithin_arctan, Orientation.oangle_add_left_eq_arctan_of_oangle_eq_pi_div_two, EuclideanGeometry.angle_eq_arctan_of_angle_eq_pi_div_two, range_arctan, arctan_eq_zero_iff, HasDerivAt.arctan, arctan_mem_Ioo, neg_pi_div_two_lt_arctan, HasFDerivAt.arctan, ContDiff.arctan, arctan_le_arctan, two_mul_arctan_inv_2_sub_arctan_inv_7, EuclideanGeometry.oangle_right_eq_arctan_of_oangle_eq_pi_div_two, HasStrictDerivAt.arctan, sin_sq_arctan, arctan_add_arctan_lt_pi_div_two, two_mul_arctan, arctan_eq_neg_pi_div_four, InnerProductGeometry.angle_add_eq_arctan_of_inner_eq_zero, measurable_arctan, ContDiffWithinAt.arctan, arctan_neg, arctan_eq_of_tan_eq, arctan_inv_of_neg, DifferentiableWithinAt.arctan, sin_arctan_pos, deriv_arctan, Differentiable.arctan, arctan_strictMono, integral_div_sq_add_sq, arctan_injective, ContDiffAt.arctan, arctan_zero, HasStrictFDerivAt.arctan, fderiv_arctan, HasDerivWithinAt.arctan, Orientation.oangle_sub_right_smul_rotation_pi_div_two, differentiableAt_arctan, arctan_inj, arctan_inv_2_add_arctan_inv_3, arctan_one, arccos_eq_arctan, EuclideanGeometry.oangle_left_eq_arctan_of_oangle_eq_pi_div_two, continuous_arctan, arctan_inv_sqrt_three, integral_inv_sq_add_sq, ContDiffOn.arctan, Orientation.oangle_sub_left_smul_rotation_pi_div_two, Orientation.oangle_add_right_smul_rotation_pi_div_two, hasStrictDerivAt_arctan, arctan_le_arctan_iff, arctan_lt_zero, Orientation.oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two, sin_arctan_eq_zero, HasFDerivWithinAt.arctan, contDiff_arctan, tendsto_arctan_atTop, DifferentiableOn.arctan, Measurable.arctan, two_mul_arctan_sub_pi, tendsto_arctan_atBot, two_mul_arctan_add_pi, hasDerivAt_arctan', sin_arctan_strictMono, integral_one_div_one_add_sq, two_mul_arctan_inv_3_add_arctan_inv_7, arctan_inv_of_pos, arctan_lt_arctan, arctan_lt_pi_div_two, arctan_sqrt_three, arctan_le_zero, arctan_mono, Orientation.oangle_sub_left_eq_arctan_of_oangle_eq_pi_div_two, hasSum_arctan, sin_arctan_le_zero, integral_inv_one_add_sq, tan_arctan, coe_tanPartialHomeomorph_symm, InnerProductGeometry.angle_sub_eq_arctan_of_inner_eq_zero, arctan_add, arctan_eq_pi_div_four, integral_Ioi_inv_one_add_sq, hasDerivAt_arctan, arctan_add_eq_sub_pi, cos_arctan_pos, fderivWithin_arctan, integral_Iic_inv_one_add_sq, arcsin_eq_arctan, DifferentiableAt.arctan, continuousAt_arctan, cos_sq_arctan, Orientation.oangle_sub_right_eq_arctan_of_oangle_eq_pi_div_two, arctan_tan, four_mul_arctan_inv_5_sub_arctan_inv_239, arctan_lt_arctan_iff, sin_arctan_lt_zero, cos_arctan, arctan_add_eq_add_pi
|