Documentation Verification Report

Arctan

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean

Statistics

MetricCount
DefinitionsevalRealArctan, evalRealCosArctan, evalRealSinArctan, arctan, tanOrderIso, tanPartialHomeomorph
6
Theoremsarccos_eq_arctan, arcsin_eq_arctan, arctan_add, arctan_add_arctan_lt_pi_div_two, arctan_add_eq_add_pi, arctan_add_eq_sub_pi, arctan_eq_arccos, arctan_eq_arcsin, arctan_eq_neg_pi_div_four, arctan_eq_of_tan_eq, arctan_eq_pi_div_four, arctan_eq_zero_iff, arctan_inj, arctan_injective, arctan_inv_2_add_arctan_inv_3, arctan_inv_of_neg, arctan_inv_of_pos, arctan_inv_sqrt_three, arctan_le_arctan, arctan_le_arctan_iff, arctan_le_zero, arctan_lt_arctan, arctan_lt_arctan_iff, arctan_lt_pi_div_two, arctan_lt_zero, arctan_mem_Ioo, arctan_mono, arctan_ne_mul_pi_div_two, arctan_neg, arctan_nonneg, arctan_one, arctan_pos, arctan_sqrt_three, arctan_strictMono, arctan_tan, arctan_zero, coe_tanPartialHomeomorph, coe_tanPartialHomeomorph_symm, continuousAt_arctan, continuousOn_tan, continuousOn_tan_Ioo, continuous_arctan, continuous_tan, cos_arctan, cos_arctan_pos, cos_sq_arctan, four_mul_arctan_inv_5_sub_arctan_inv_239, image_tan_Ioo, neg_pi_div_two_lt_arctan, range_arctan, sin_arctan, sin_arctan_eq_zero, sin_arctan_le_zero, sin_arctan_lt_zero, sin_arctan_nonneg, sin_arctan_pos, sin_arctan_strictMono, sin_sq_arctan, surjOn_tan, tan_add, tan_add', tan_arctan, tan_int_mul_pi_div_two, tan_sub, tan_sub', tan_surjective, tan_two_mul, tendsto_arctan_atBot, tendsto_arctan_atTop, two_mul_arctan, two_mul_arctan_add_pi, two_mul_arctan_inv_2_sub_arctan_inv_7, two_mul_arctan_inv_3_add_arctan_inv_7, two_mul_arctan_sub_pi
74
Total80

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalRealArctan πŸ“–CompOpβ€”
evalRealCosArctan πŸ“–CompOpβ€”
evalRealSinArctan πŸ“–CompOpβ€”

Real

Definitions

NameCategoryTheorems
arctan πŸ“–CompOp
108 mathmath: arctan_eq_arccos, differentiable_arctan, sin_arctan, deriv_arctan, Orientation.oangle_add_left_smul_rotation_pi_div_two, Complex.ofReal_arctan, arctan_eq_arcsin, arctan_nonneg, sin_arctan_nonneg, arctan_pos, derivWithin_arctan, Orientation.oangle_add_left_eq_arctan_of_oangle_eq_pi_div_two, EuclideanGeometry.angle_eq_arctan_of_angle_eq_pi_div_two, range_arctan, arctan_eq_zero_iff, HasDerivAt.arctan, arctan_mem_Ioo, neg_pi_div_two_lt_arctan, HasFDerivAt.arctan, ContDiff.arctan, arctan_le_arctan, two_mul_arctan_inv_2_sub_arctan_inv_7, EuclideanGeometry.oangle_right_eq_arctan_of_oangle_eq_pi_div_two, HasStrictDerivAt.arctan, sin_sq_arctan, arctan_add_arctan_lt_pi_div_two, two_mul_arctan, arctan_eq_neg_pi_div_four, InnerProductGeometry.angle_add_eq_arctan_of_inner_eq_zero, measurable_arctan, ContDiffWithinAt.arctan, arctan_neg, arctan_eq_of_tan_eq, arctan_inv_of_neg, DifferentiableWithinAt.arctan, sin_arctan_pos, deriv_arctan, Differentiable.arctan, arctan_strictMono, integral_div_sq_add_sq, arctan_injective, ContDiffAt.arctan, arctan_zero, HasStrictFDerivAt.arctan, fderiv_arctan, HasDerivWithinAt.arctan, Orientation.oangle_sub_right_smul_rotation_pi_div_two, differentiableAt_arctan, arctan_inj, arctan_inv_2_add_arctan_inv_3, arctan_one, arccos_eq_arctan, EuclideanGeometry.oangle_left_eq_arctan_of_oangle_eq_pi_div_two, continuous_arctan, arctan_inv_sqrt_three, integral_inv_sq_add_sq, ContDiffOn.arctan, Orientation.oangle_sub_left_smul_rotation_pi_div_two, Orientation.oangle_add_right_smul_rotation_pi_div_two, hasStrictDerivAt_arctan, arctan_le_arctan_iff, arctan_lt_zero, Orientation.oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two, sin_arctan_eq_zero, HasFDerivWithinAt.arctan, contDiff_arctan, tendsto_arctan_atTop, DifferentiableOn.arctan, Measurable.arctan, two_mul_arctan_sub_pi, tendsto_arctan_atBot, two_mul_arctan_add_pi, hasDerivAt_arctan', sin_arctan_strictMono, integral_one_div_one_add_sq, two_mul_arctan_inv_3_add_arctan_inv_7, arctan_inv_of_pos, arctan_lt_arctan, arctan_lt_pi_div_two, arctan_sqrt_three, arctan_le_zero, arctan_mono, Orientation.oangle_sub_left_eq_arctan_of_oangle_eq_pi_div_two, hasSum_arctan, sin_arctan_le_zero, integral_inv_one_add_sq, tan_arctan, coe_tanPartialHomeomorph_symm, InnerProductGeometry.angle_sub_eq_arctan_of_inner_eq_zero, arctan_add, arctan_eq_pi_div_four, integral_Ioi_inv_one_add_sq, hasDerivAt_arctan, arctan_add_eq_sub_pi, cos_arctan_pos, fderivWithin_arctan, integral_Iic_inv_one_add_sq, arcsin_eq_arctan, DifferentiableAt.arctan, continuousAt_arctan, cos_sq_arctan, Orientation.oangle_sub_right_eq_arctan_of_oangle_eq_pi_div_two, arctan_tan, four_mul_arctan_inv_5_sub_arctan_inv_239, arctan_lt_arctan_iff, sin_arctan_lt_zero, cos_arctan, arctan_add_eq_add_pi
tanOrderIso πŸ“–CompOpβ€”
tanPartialHomeomorph πŸ“–CompOp
2 mathmath: coe_tanPartialHomeomorph, coe_tanPartialHomeomorph_symm

Theorems

NameKindAssumesProvesValidatesDepends On
arccos_eq_arctan πŸ“–mathematicalReal
instLT
instZero
arccos
arctan
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
instOne
Monoid.toNatPow
instMonoid
β€”arccos.eq_1
arctan_eq_of_tan_eq
Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
tan_pi_div_two_sub
tan_arcsin
inv_div
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_nonpos
instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
arcsin_le_pi_div_two
Mathlib.Tactic.Linarith.sub_neg_of_lt
pi_pos
Mathlib.Tactic.Linarith.mul_neg
arcsin_pos
arcsin_eq_arctan πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
arcsin
arctan
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”Nat.cast_one
arctan_eq_arcsin
div_pow
sq_sqrt
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Int.cast_neg
Int.cast_one
one_add_div
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
div_div
sqrt_mul
mul_div_cancelβ‚€
sub_add_cancel
sqrt_one
div_one
arctan_add πŸ“–mathematicalReal
instLT
instMul
instOne
instAdd
arctan
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”arctan_tan
Nat.instAtLeastTwoHAddOfNat
neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
neg_add
arctan_neg
arctan_add_arctan_lt_pi_div_two
neg_mul_neg
tan_arctan
tan_add'
arctan_ne_mul_pi_div_two
arctan_add_arctan_lt_pi_div_two πŸ“–mathematicalReal
instLT
instMul
instOne
instAdd
arctan
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
le_or_gt
add_zero
arctan_zero
add_lt_add_of_lt_of_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
arctan_lt_pi_div_two
OrderIso.monotone
OrderIso.strictMono
inv_eq_one_div
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
lt_tsub_iff_right
AddGroup.toOrderedSub
arctan_inv_of_pos
arctan_add_eq_add_pi πŸ“–mathematicalReal
instLT
instOne
instMul
instZero
instAdd
arctan
DivInvMonoid.toDiv
instDivInvMonoid
instSub
pi
β€”mul_pos_iff
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
LT.lt.trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LT.lt.asymm
arctan_add
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_inv
add_comm
arctan_neg
sub_eq_add_neg
sub_eq_iff_eq_add'
sub_eq_iff_eq_add
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
arctan_inv_of_pos
arctan_add_eq_sub_pi πŸ“–mathematicalReal
instLT
instOne
instMul
instZero
instAdd
arctan
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”arctan_add_eq_add_pi
neg_mul_neg
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
arctan_neg
neg_add
neg_neg
sub_eq_add_neg
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.one_mul
arctan_eq_arccos πŸ“–mathematicalReal
instLE
instZero
arctan
arccos
instInv
sqrt
instAdd
instOne
Monoid.toNatPow
instMonoid
β€”arctan_eq_arcsin
arccos_eq_arcsin
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sqrt_nonneg
Nat.cast_one
sqrt_inv
sq_sqrt
le_of_lt
inv_pos_of_pos
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
one_div
one_sub_div
ne_of_gt
add_sub_cancel_left
sqrt_div
sqrt_sq
Nat.cast_zero
arctan_eq_arcsin πŸ“–mathematicalβ€”arctan
arcsin
Real
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instAdd
instOne
Monoid.toNatPow
instMonoid
β€”arcsin_eq_of_sin_eq
sin_arctan
Set.mem_Icc_of_Ioo
Nat.instAtLeastTwoHAddOfNat
arctan_mem_Ioo
arctan_eq_neg_pi_div_four πŸ“–mathematicalβ€”arctan
Real
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”arctan_injective
Nat.instAtLeastTwoHAddOfNat
arctan_neg
arctan_one
arctan_eq_of_tan_eq πŸ“–mathematicaltan
Real
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctanβ€”Nat.instAtLeastTwoHAddOfNat
injOn_tan
arctan_mem_Ioo
tan_arctan
arctan_eq_pi_div_four πŸ“–mathematicalβ€”arctan
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”arctan_injective
Nat.instAtLeastTwoHAddOfNat
arctan_one
arctan_eq_zero_iff πŸ“–mathematicalβ€”arctan
Real
instZero
β€”arctan_zero
arctan_injective
arctan_inj πŸ“–mathematicalβ€”arctanβ€”arctan_injective
arctan_injective πŸ“–mathematicalβ€”Real
arctan
β€”StrictMono.injective
arctan_strictMono
arctan_inv_2_add_arctan_inv_3 πŸ“–mathematicalβ€”Real
instAdd
arctan
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
arctan_add
Mathlib.Meta.NormNum.isNNRat_lt_true
instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
arctan_one
arctan_inv_of_neg πŸ“–mathematicalReal
instLT
instZero
arctan
instInv
instSub
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
arctan_inv_of_pos
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
neg_neg
arctan_neg
neg_sub'
neg_eq_iff_eq_neg
inv_neg
arctan_inv_of_pos πŸ“–mathematicalReal
instLT
instZero
arctan
instInv
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
arctan_tan
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
LT.lt.trans
arctan_lt_pi_div_two
half_lt_self_iff
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pi_pos
sub_lt_self_iff
arctan_zero
OrderIso.strictMono
tan_pi_div_two_sub
tan_arctan
arctan_inv_sqrt_three πŸ“–mathematicalβ€”arctan
Real
instInv
sqrt
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
inv_eq_one_div
tan_pi_div_six
arctan_tan
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_pos
instZeroLEOneClass
pi_pos
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Meta.NormNum.isInt_lt_true
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
arctan_le_arctan πŸ“–mathematicalReal
instLE
arctanβ€”StrictMono.monotone
arctan_strictMono
arctan_le_arctan_iff πŸ“–mathematicalβ€”Real
instLE
arctan
β€”StrictMono.le_iff_le
arctan_strictMono
arctan_le_zero πŸ“–mathematicalβ€”Real
instLE
arctan
instZero
β€”arctan_zero
arctan_le_arctan_iff
arctan_lt_arctan πŸ“–mathematicalReal
instLT
arctanβ€”arctan_strictMono
arctan_lt_arctan_iff πŸ“–mathematicalβ€”Real
instLT
arctan
β€”StrictMono.lt_iff_lt
arctan_strictMono
arctan_lt_pi_div_two πŸ“–mathematicalβ€”Real
instLT
arctan
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
arctan_mem_Ioo
arctan_lt_zero πŸ“–mathematicalβ€”Real
instLT
arctan
instZero
β€”arctan_zero
arctan_lt_arctan_iff
arctan_mem_Ioo πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
β€”Subtype.coe_prop
Nat.instAtLeastTwoHAddOfNat
arctan_mono πŸ“–mathematicalβ€”Monotone
Real
instPreorder
arctan
β€”StrictMono.monotone
arctan_strictMono
arctan_ne_mul_pi_div_two πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Push.not_forall_eq
arctan_mem_Ioo
Nat.cast_one
Int.cast_ofNat
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
mul_lt_mul_iff_leftβ‚€
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pi_pos
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
mul_div_assoc
one_mul
neg_eq_neg_one_mul
arctan_neg πŸ“–mathematicalβ€”arctan
Real
instNeg
β€”arctan_eq_arcsin
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
neg_div
arcsin_neg
arctan_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
arctan
β€”arctan_zero
arctan_le_arctan_iff
arctan_one πŸ“–mathematicalβ€”arctan
Real
instOne
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”arctan_eq_of_tan_eq
Nat.instAtLeastTwoHAddOfNat
tan_pi_div_four
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
pi_pos
arctan_pos πŸ“–mathematicalβ€”Real
instLT
instZero
arctan
β€”arctan_zero
arctan_lt_arctan_iff
arctan_sqrt_three πŸ“–mathematicalβ€”arctan
sqrt
Real
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
tan_pi_div_three
arctan_tan
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_pos
instZeroLEOneClass
pi_pos
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Meta.NormNum.isInt_lt_true
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
arctan_strictMono πŸ“–mathematicalβ€”StrictMono
Real
instPreorder
arctan
β€”OrderIso.strictMono
Nat.instAtLeastTwoHAddOfNat
arctan_tan πŸ“–mathematicalReal
instLT
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
tan
β€”Nat.instAtLeastTwoHAddOfNat
OrderIso.symm_apply_apply
arctan_zero πŸ“–mathematicalβ€”arctan
Real
instZero
β€”arctan_eq_arcsin
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
add_zero
sqrt_one
div_one
arcsin_zero
coe_tanPartialHomeomorph πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
tanPartialHomeomorph
tan
β€”β€”
coe_tanPartialHomeomorph_symm πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
OpenPartialHomeomorph.symm
tanPartialHomeomorph
arctan
β€”β€”
continuousAt_arctan πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
arctan
β€”Continuous.continuousAt
continuous_arctan
continuousOn_tan πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
tan
setOf
cos
instZero
β€”ContinuousOn.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousOn_sin
continuousOn_cos
tan_eq_sin_div_cos
continuousOn_tan_Ioo πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
tan
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”ContinuousOn.mono
Nat.instAtLeastTwoHAddOfNat
continuousOn_tan
cos_eq_zero_iff
le_or_gt
lt_iff_not_ge
one_mul
mul_div_assoc
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pi_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instNontrivial
instZeroLEOneClass
neg_mul_eq_neg_mul
le_neg_iff_add_nonpos_right
Int.instAddLeftMono
le_sub_iff_add_le
mul_comm
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
zero_lt_two
NeZero.charZero_one
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsInt.neg_to_eq
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_div
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.instAtLeastTwo
continuous_arctan πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
arctan
β€”Continuous.comp
continuous_subtype_val
Homeomorph.continuous_invFun
Nat.instAtLeastTwoHAddOfNat
orderTopology_of_ordConnected
instOrderTopologyReal
Set.ordConnected_Ioo
continuous_tan πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
setOf
cos
instZero
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
tan
β€”continuousOn_iff_continuous_restrict
continuousOn_tan
cos_arctan πŸ“–mathematicalβ€”cos
arctan
Real
DivInvMonoid.toDiv
instDivInvMonoid
instOne
sqrt
instAdd
Monoid.toNatPow
instMonoid
β€”one_div
inv_sqrt_one_add_tan_sq
cos_arctan_pos
tan_arctan
cos_arctan_pos πŸ“–mathematicalβ€”Real
instLT
instZero
cos
arctan
β€”cos_pos_of_mem_Ioo
arctan_mem_Ioo
cos_sq_arctan πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
cos
arctan
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instAdd
β€”one_div
inv_one_add_tan_sq
LT.lt.ne'
cos_arctan_pos
tan_arctan
four_mul_arctan_inv_5_sub_arctan_inv_239 πŸ“–mathematicalβ€”Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
instInv
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
two_mul_arctan
Mathlib.Meta.NormNum.isRat_lt_true
instIsStrictOrderedRing
DivisionRing.toNontrivial
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Nat.cast_one
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
arctan_one
sub_eq_iff_eq_add
arctan_add
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_add
image_tan_Ioo πŸ“–mathematicalβ€”Set.image
Real
tan
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.univ
β€”Nat.instAtLeastTwoHAddOfNat
Set.univ_subset_iff
surjOn_tan
neg_pi_div_two_lt_arctan πŸ“–mathematicalβ€”Real
instLT
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
β€”Nat.instAtLeastTwoHAddOfNat
arctan_mem_Ioo
range_arctan πŸ“–mathematicalβ€”Set.range
Real
arctan
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Function.Surjective.range_comp
EquivLike.surjective
Subtype.range_coe
sin_arctan πŸ“–mathematicalβ€”sin
arctan
Real
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instAdd
instOne
Monoid.toNatPow
instMonoid
β€”tan_div_sqrt_one_add_tan_sq
cos_arctan_pos
tan_arctan
sin_arctan_eq_zero πŸ“–mathematicalβ€”sin
arctan
Real
instZero
β€”StrictMono.injective
sin_arctan_strictMono
arctan_zero
sin_zero
sin_arctan_le_zero πŸ“–mathematicalβ€”Real
instLE
sin
arctan
instZero
β€”arctan_zero
sin_zero
StrictMono.le_iff_le
sin_arctan_strictMono
sin_arctan_lt_zero πŸ“–mathematicalβ€”Real
instLT
sin
arctan
instZero
β€”arctan_zero
sin_zero
StrictMono.lt_iff_lt
sin_arctan_strictMono
sin_arctan_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
sin
arctan
β€”arctan_zero
sin_zero
StrictMono.le_iff_le
sin_arctan_strictMono
sin_arctan_pos πŸ“–mathematicalβ€”Real
instLT
instZero
sin
arctan
β€”arctan_zero
sin_zero
StrictMono.lt_iff_lt
sin_arctan_strictMono
sin_arctan_strictMono πŸ“–mathematicalβ€”StrictMono
Real
instPreorder
sin
arctan
β€”strictMonoOn_sin
Set.Ioo_subset_Icc_self
Nat.instAtLeastTwoHAddOfNat
arctan_mem_Ioo
arctan_strictMono
sin_sq_arctan πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sin
arctan
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instOne
β€”tan_sq_div_one_add_tan_sq
LT.lt.ne'
cos_arctan_pos
tan_arctan
surjOn_tan πŸ“–mathematicalβ€”Set.SurjOn
Real
tan
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.univ
β€”Nat.instAtLeastTwoHAddOfNat
neg_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
pi_div_two_pos
ContinuousOn.surjOn_of_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Set.ordConnected_Ioo
Set.nonempty_Ioo
continuousOn_tan_Ioo
tendsto_comp_coe_Ioo_atBot
Order.IsPredPrelimit.of_dense
tendsto_tan_neg_pi_div_two
tendsto_comp_coe_Ioo_atTop
Order.IsSuccPrelimit.of_dense
tendsto_tan_pi_div_two
tan_add πŸ“–mathematicalReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
pi
tan
instSub
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_tan
Complex.ofReal_add
Complex.ofReal_div
Complex.ofReal_sub
Complex.ofReal_mul
Complex.tan_add
Nat.cast_one
Int.cast_ofNat
Int.cast_one
Int.cast_add
Int.cast_mul
tan_add' πŸ“–mathematicalβ€”tan
Real
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
instMul
β€”Nat.instAtLeastTwoHAddOfNat
tan_add
tan_arctan πŸ“–mathematicalβ€”tan
arctan
β€”OrderIso.apply_symm_apply
Nat.instAtLeastTwoHAddOfNat
tan_int_mul_pi_div_two πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instIntCast
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_zero_iff
tan_sub πŸ“–mathematicalReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
pi
tan
instSub
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_tan
Complex.ofReal_sub
Complex.ofReal_div
Complex.ofReal_add
Complex.ofReal_mul
Complex.tan_sub
Nat.cast_one
Int.cast_ofNat
Int.cast_one
Int.cast_add
Int.cast_mul
tan_sub' πŸ“–mathematicalβ€”tan
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instOne
instMul
β€”Nat.instAtLeastTwoHAddOfNat
tan_sub
tan_surjective πŸ“–mathematicalβ€”Real
tan
β€”Set.SurjOn.subset_range
Nat.instAtLeastTwoHAddOfNat
surjOn_tan
tan_two_mul πŸ“–mathematicalβ€”tan
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Complex.tan_two_mul
Nat.cast_one
tendsto_arctan_atBot πŸ“–mathematicalβ€”Filter.Tendsto
Real
arctan
Filter.atBot
instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Ioi
β€”tendsto_Ioo_atBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
OrderIso.tendsto_atBot
Nat.instAtLeastTwoHAddOfNat
tendsto_arctan_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
arctan
Filter.atTop
instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Iio
β€”tendsto_Ioo_atTop
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
OrderIso.tendsto_atTop
Nat.instAtLeastTwoHAddOfNat
two_mul_arctan πŸ“–mathematicalReal
instLT
instNeg
instOne
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
DivInvMonoid.toDiv
instDivInvMonoid
instSub
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
arctan_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
two_mul_arctan_add_pi πŸ“–mathematicalReal
instLT
instOne
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instSub
Monoid.toNatPow
instMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
arctan_add_eq_add_pi
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Ring.neg_congr
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
two_mul_arctan_inv_2_sub_arctan_inv_7 πŸ“–mathematicalβ€”Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
instInv
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
two_mul_arctan
Mathlib.Meta.NormNum.isRat_lt_true
instIsStrictOrderedRing
DivisionRing.toNontrivial
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
arctan_one
sub_eq_iff_eq_add
arctan_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.isNNRat_add
two_mul_arctan_inv_3_add_arctan_inv_7 πŸ“–mathematicalβ€”Real
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
instInv
DivInvMonoid.toDiv
instDivInvMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
two_mul_arctan
Mathlib.Meta.NormNum.isRat_lt_true
instIsStrictOrderedRing
DivisionRing.toNontrivial
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
arctan_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
arctan_one
two_mul_arctan_sub_pi πŸ“–mathematicalReal
instLT
instNeg
instOne
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
arctan
instSub
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
pi
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
arctan_add_eq_sub_pi
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero

---

← Back to Index