Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean

Statistics

MetricCount
DefinitionsevalRealPi, pi, pi, sinOrderIso, sqrtTwoAddSeries, termΟ€
6
TheoremscontinuousOn_cos, continuousOn_sin, continuous_cos, continuous_cosh, continuous_sin, continuous_sinh, cos_add_int_mul_two_pi, cos_add_nat_mul_two_pi, cos_add_pi, cos_add_pi_div_two, cos_add_two_pi, cos_antiperiodic, cos_eq_zero_iff_sin_eq, cos_int_mul_two_pi, cos_int_mul_two_pi_add_pi, cos_int_mul_two_pi_sub, cos_int_mul_two_pi_sub_pi, cos_nat_mul_two_pi, cos_nat_mul_two_pi_add_pi, cos_nat_mul_two_pi_sub, cos_nat_mul_two_pi_sub_pi, cos_periodic, cos_pi, cos_pi_div_two, cos_pi_div_two_sub, cos_pi_sub, cos_sub_int_mul_two_pi, cos_sub_nat_mul_two_pi, cos_sub_pi, cos_sub_pi_div_two, cos_sub_two_pi, cos_two_pi, cos_two_pi_sub, exp_add_pi_mul_I, exp_antiperiodic, exp_int_mul_two_pi_mul_I, exp_mul_I_antiperiodic, exp_mul_I_periodic, exp_nat_mul_two_pi_mul_I, exp_neg_pi_div_two_mul_I, exp_periodic, exp_pi_div_two_mul_I, exp_pi_mul_I, exp_sub_pi_mul_I, exp_two_pi_mul_I, norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, sin_add_int_mul_two_pi, sin_add_nat_mul_two_pi, sin_add_pi, sin_add_pi_div_two, sin_add_two_pi, sin_antiperiodic, sin_eq_zero_iff_cos_eq, sin_int_mul_pi, sin_int_mul_two_pi_sub, sin_nat_mul_pi, sin_nat_mul_two_pi_sub, sin_periodic, sin_pi, sin_pi_div_two, sin_pi_div_two_sub, sin_pi_sub, sin_sub_int_mul_two_pi, sin_sub_nat_mul_two_pi, sin_sub_pi, sin_sub_pi_div_two, sin_sub_two_pi, sin_two_pi, sin_two_pi_sub, tan_add_int_mul_pi, tan_add_nat_mul_pi, tan_add_pi, tan_int_mul_pi, tan_int_mul_pi_sub, tan_nat_mul_pi, tan_nat_mul_pi_sub, tan_periodic, tan_pi_div_two_sub, tan_pi_sub, tan_sub_int_mul_pi, tan_sub_nat_mul_pi, tan_sub_pi, coe_real_pi, pi_ne_zero, pi_pos, isRoot_cos_pi_div_five, abs_cos_int_mul_pi, abs_sin_eq_sin_abs_of_abs_le_pi, abs_sin_half, antitoneOn_cos, bijOn_cos, bijOn_sin, coe_sinOrderIso_apply, continuousOn_cos, continuousOn_sin, continuous_cos, continuous_cosh, continuous_sin, continuous_sinh, cos_add_int_mul_pi, cos_add_int_mul_two_pi, cos_add_nat_mul_pi, cos_add_nat_mul_two_pi, cos_add_pi, cos_add_pi_div_two, cos_add_two_pi, cos_antiperiodic, cos_eq_one_iff, cos_eq_one_iff_of_lt_of_lt, cos_eq_sqrt_one_sub_sin_sq, cos_eq_zero_iff_sin_eq, cos_half, cos_int_mul_pi, cos_int_mul_pi_sub, cos_int_mul_two_pi, cos_int_mul_two_pi_add_pi, cos_int_mul_two_pi_sub, cos_int_mul_two_pi_sub_pi, cos_le_cos_of_nonneg_of_le_pi, cos_lt_cos_of_nonneg_of_le_pi, cos_lt_cos_of_nonneg_of_le_pi_div_two, cos_mem_Icc, cos_nat_mul_pi, cos_nat_mul_pi_sub, cos_nat_mul_two_pi, cos_nat_mul_two_pi_add_pi, cos_nat_mul_two_pi_sub, cos_nat_mul_two_pi_sub_pi, cos_neg_of_pi_div_two_lt_of_lt, cos_nonneg_of_mem_Icc, cos_nonneg_of_neg_pi_div_two_le_of_le, cos_nonpos_of_pi_div_two_le_of_le, cos_periodic, cos_pi, cos_pi_div_eight, cos_pi_div_five, cos_pi_div_four, cos_pi_div_six, cos_pi_div_sixteen, cos_pi_div_thirty_two, cos_pi_div_three, cos_pi_div_two, cos_pi_div_two_sub, cos_pi_over_two_pow, cos_pi_sub, cos_pos_of_mem_Ioo, cos_sub_int_mul_pi, cos_sub_int_mul_two_pi, cos_sub_nat_mul_pi, cos_sub_nat_mul_two_pi, cos_sub_pi, cos_sub_pi_div_two, cos_sub_two_pi, cos_two_pi, cos_two_pi_sub, exists_cos_eq_zero, injOn_cos, injOn_sin, injOn_tan, mapsTo_cos, mapsTo_sin, monotoneOn_sin, one_le_pi_div_two, pi_div_two_le_two, pi_div_two_pos, pi_le_four, pi_ne_zero, pi_nonneg, pi_pos, quadratic_root_cos_pi_div_five, range_cos, range_cos_infinite, range_sin, range_sin_infinite, sinOrderIso_apply, sin_add_int_mul_pi, sin_add_int_mul_two_pi, sin_add_nat_mul_pi, sin_add_nat_mul_two_pi, sin_add_pi, sin_add_pi_div_two, sin_add_two_pi, sin_antiperiodic, sin_eq_sqrt_one_sub_cos_sq, sin_eq_zero_iff, sin_eq_zero_iff_cos_eq, sin_eq_zero_iff_of_lt_of_lt, sin_half_eq_neg_sqrt, sin_half_eq_sqrt, sin_int_mul_pi, sin_int_mul_pi_sub, sin_int_mul_two_pi_sub, sin_le_sin_of_le_of_le_pi_div_two, sin_lt_sin_of_lt_of_le_pi_div_two, sin_mem_Icc, sin_nat_mul_pi, sin_nat_mul_pi_sub, sin_nat_mul_two_pi_sub, sin_ne_zero_iff, sin_neg_of_neg_of_neg_pi_lt, sin_nonneg_of_mem_Icc, sin_nonneg_of_nonneg_of_le_pi, sin_nonpos_of_nonpos_of_neg_pi_le, sin_periodic, sin_pi, sin_pi_div_eight, sin_pi_div_four, sin_pi_div_six, sin_pi_div_sixteen, sin_pi_div_thirty_two, sin_pi_div_three, sin_pi_div_two, sin_pi_div_two_sub, sin_pi_over_two_pow_succ, sin_pi_sub, sin_pos_of_mem_Ioo, sin_pos_of_pos_of_lt_pi, sin_sq_pi_over_two_pow, sin_sq_pi_over_two_pow_succ, sin_sub_int_mul_pi, sin_sub_int_mul_two_pi, sin_sub_nat_mul_pi, sin_sub_nat_mul_two_pi, sin_sub_pi, sin_sub_pi_div_two, sin_sub_two_pi, sin_two_pi, sin_two_pi_sub, sq_cos_pi_div_six, sq_sin_pi_div_three, sqrtTwoAddSeries_lt_two, sqrtTwoAddSeries_monotone_left, sqrtTwoAddSeries_nonneg, sqrtTwoAddSeries_one, sqrtTwoAddSeries_succ, sqrtTwoAddSeries_two, sqrtTwoAddSeries_zero, sqrtTwoAddSeries_zero_nonneg, strictAntiOn_cos, strictMonoOn_sin, strictMonoOn_tan, surjOn_cos, surjOn_sin, tan_add_int_mul_pi, tan_add_nat_mul_pi, tan_add_pi, tan_inj_of_lt_of_lt_pi_div_two, tan_int_mul_pi, tan_int_mul_pi_sub, tan_lt_tan_of_lt_of_lt_pi_div_two, tan_lt_tan_of_nonneg_of_lt_pi_div_two, tan_nat_mul_pi, tan_nat_mul_pi_sub, tan_neg_of_neg_of_pi_div_two_lt, tan_nonneg_of_nonneg_of_le_pi_div_two, tan_nonpos_of_nonpos_of_neg_pi_div_two_le, tan_periodic, tan_pi, tan_pi_div_four, tan_pi_div_six, tan_pi_div_three, tan_pi_div_two, tan_pi_div_two_sub, tan_pi_sub, tan_pos_of_pos_of_lt_pi_div_two, tan_sub_int_mul_pi, tan_sub_nat_mul_pi, tan_sub_pi, tendsto_cos_neg_pi_div_two, tendsto_cos_pi_div_two, tendsto_sin_neg_pi_div_two, tendsto_sin_pi_div_two, tendsto_tan_neg_pi_div_two, tendsto_tan_pi_div_two, two_le_pi, two_pi_pos
276
Total282

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_cos πŸ“–mathematicalβ€”ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
cos
β€”Continuous.continuousOn
continuous_cos
continuousOn_sin πŸ“–mathematicalβ€”ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
sin
β€”Continuous.continuousOn
continuous_sin
continuous_cos πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
cos
β€”Continuous.comp'
Nat.instAtLeastTwoHAddOfNat
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
Continuous.cexp
Continuous.fun_mul
Continuous.fst
Continuous.snd
Continuous.prodMk
continuous_const
Continuous.neg
IsTopologicalRing.toContinuousNeg
continuous_cosh πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
cosh
β€”Continuous.comp'
Nat.instAtLeastTwoHAddOfNat
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
Continuous.cexp
Continuous.neg
IsTopologicalRing.toContinuousNeg
continuous_sin πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
sin
β€”Continuous.comp'
Nat.instAtLeastTwoHAddOfNat
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
Continuous.fun_mul
Continuous.fst
Continuous.snd
Continuous.prodMk
continuous_const
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.cexp
Continuous.neg
IsTopologicalRing.toContinuousNeg
continuous_sinh πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
sinh
β€”Continuous.comp'
Nat.instAtLeastTwoHAddOfNat
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.cexp
Continuous.neg
IsTopologicalRing.toContinuousNeg
cos_add_int_mul_two_pi πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.int_mul
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_add_nat_mul_two_pi πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.nat_mul
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_add_pi πŸ“–mathematicalβ€”cos
Complex
instAdd
ofReal
Real.pi
instNeg
β€”cos_antiperiodic
cos_add_pi_div_two πŸ“–mathematicalβ€”cos
Complex
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instNeg
sin
β€”Nat.instAtLeastTwoHAddOfNat
cos_add
cos_pi_div_two
MulZeroClass.mul_zero
sin_pi_div_two
mul_one
zero_sub
cos_add_two_pi πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”cos_periodic
cos_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Complex
instAdd
instNeg
cos
ofReal
Real.pi
β€”cos_add
cos_pi
mul_neg
mul_one
sin_pi
MulZeroClass.mul_zero
sub_zero
cos_eq_zero_iff_sin_eq πŸ“–mathematicalβ€”cos
Complex
instZero
sin
instOne
instNeg
β€”mul_self_eq_one_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sin_sq_add_cos_sq
sq
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_eq_zero
cos_int_mul_two_pi πŸ“–mathematicalβ€”cos
Complex
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_eq
cos_periodic
cos_zero
cos_int_mul_two_pi_add_pi πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.add_antiperiod_eq
Function.Periodic.int_mul
cos_periodic
cos_antiperiodic
cos_int_mul_two_pi_sub πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_sub_eq
cos_periodic
cos_neg
cos_int_mul_two_pi_sub_pi πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.sub_antiperiod_eq
Function.Periodic.int_mul
cos_periodic
cos_antiperiodic
cos_nat_mul_two_pi πŸ“–mathematicalβ€”cos
Complex
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_eq
cos_periodic
cos_zero
cos_nat_mul_two_pi_add_pi πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.add_antiperiod_eq
Function.Periodic.nat_mul
cos_periodic
cos_antiperiodic
cos_nat_mul_two_pi_sub πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_sub_eq
cos_periodic
cos_neg
cos_nat_mul_two_pi_sub_pi πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.sub_antiperiod_eq
Function.Periodic.nat_mul
cos_periodic
cos_antiperiodic
cos_periodic πŸ“–mathematicalβ€”Function.Periodic
Complex
instAdd
cos
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Antiperiodic.periodic_two_mul
cos_antiperiodic
cos_pi πŸ“–mathematicalβ€”cos
ofReal
Real.pi
Complex
instNeg
instOne
β€”ofReal_cos
Real.cos_pi
ofReal_neg
cos_pi_div_two πŸ“–mathematicalβ€”cos
Complex
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”Nat.instAtLeastTwoHAddOfNat
ofReal_cos
ofReal_div
Real.cos_pi_div_two
cos_pi_div_two_sub πŸ“–mathematicalβ€”cos
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”Nat.instAtLeastTwoHAddOfNat
cos_neg
neg_sub
cos_sub_pi_div_two
cos_pi_sub πŸ“–mathematicalβ€”cos
Complex
instSub
ofReal
Real.pi
instNeg
β€”Function.Antiperiodic.sub_eq'
cos_antiperiodic
cos_neg
cos_sub_int_mul_two_pi πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.sub_int_mul_eq
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_sub_nat_mul_two_pi πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.sub_nat_mul_eq
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_sub_pi πŸ“–mathematicalβ€”cos
Complex
instSub
ofReal
Real.pi
instNeg
β€”Function.Antiperiodic.sub_eq
cos_antiperiodic
cos_sub_pi_div_two πŸ“–mathematicalβ€”cos
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
cos_add
cos_neg
cos_pi_div_two
MulZeroClass.mul_zero
sin_neg
sin_pi_div_two
mul_neg
mul_one
neg_neg
zero_add
cos_sub_two_pi πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.sub_eq
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_two_pi πŸ“–mathematicalβ€”cos
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instOne
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
cos_add
cos_pi
mul_neg
mul_one
neg_neg
sin_pi
MulZeroClass.mul_zero
sub_zero
cos_two_pi_sub πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.sub_eq'
cos_periodic
cos_neg
exp_add_pi_mul_I πŸ“–mathematicalβ€”exp
Complex
instAdd
instMul
ofReal
Real.pi
I
instNeg
β€”exp_antiperiodic
exp_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Complex
instAdd
instNeg
exp
instMul
ofReal
Real.pi
I
β€”exp_add
exp_mul_I
cos_pi
sin_pi
MulZeroClass.zero_mul
add_zero
mul_neg
mul_one
exp_int_mul_two_pi_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_eq
exp_periodic
exp_zero
exp_mul_I_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Complex
instAdd
instNeg
exp
instMul
I
ofReal
Real.pi
β€”mul_inv_cancel_rightβ‚€
I_ne_zero
Function.Antiperiodic.mul_const
exp_antiperiodic
exp_mul_I_periodic πŸ“–mathematicalβ€”Function.Periodic
Complex
instAdd
exp
instMul
I
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Antiperiodic.periodic_two_mul
exp_mul_I_antiperiodic
exp_nat_mul_two_pi_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_eq
exp_periodic
exp_zero
exp_neg_pi_div_two_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instNeg
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
I
β€”Nat.instAtLeastTwoHAddOfNat
cos_add_sin_I
neg_div
cos_neg
cos_pi_div_two
sin_neg
sin_pi_div_two
zero_add
neg_mul
one_mul
exp_periodic πŸ“–mathematicalβ€”Function.Periodic
Complex
instAdd
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
β€”Nat.instAtLeastTwoHAddOfNat
Function.Antiperiodic.periodic_two_mul
exp_antiperiodic
mul_assoc
exp_pi_div_two_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
I
β€”Nat.instAtLeastTwoHAddOfNat
cos_add_sin_I
cos_pi_div_two
sin_pi_div_two
one_mul
zero_add
exp_pi_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
ofReal
Real.pi
I
instNeg
instOne
β€”Function.Antiperiodic.eq
exp_antiperiodic
exp_zero
exp_sub_pi_mul_I πŸ“–mathematicalβ€”exp
Complex
instSub
instMul
ofReal
Real.pi
I
instNeg
β€”Function.Antiperiodic.sub_eq
exp_antiperiodic
exp_two_pi_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.eq
exp_periodic
exp_zero
norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
abs
Real.lattice
Real.instAddGroup
im
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Norm.norm
Complex
instNorm
exp
instMul
ofReal
instAdd
instNeg
Real.exp
Real.instMul
Real.cos
re
β€”Nat.instAtLeastTwoHAddOfNat
norm_exp
re_ofReal_mul
exp_re
Real.cos_abs
Real.cos_neg
Distrib.rightDistribClass
mul_assoc
mul_comm
apply_abs_le_add_of_nonneg
Real.instIsOrderedAddMonoid
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
LT.lt.le
Real.exp_pos
mul_le_mul_of_nonpos_left
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
mul_le_mul
IsOrderedRing.toMulPosMono
Real.cos_le_cos_of_nonneg_of_le_pi
abs_nonneg
LE.le.trans
half_le_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_pos
Real.cos_nonneg_of_mem_Icc
neg_nonpos
Real.pi_div_two_pos
sin_add_int_mul_two_pi πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.int_mul
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_add_nat_mul_two_pi πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.nat_mul
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_add_pi πŸ“–mathematicalβ€”sin
Complex
instAdd
ofReal
Real.pi
instNeg
β€”sin_antiperiodic
sin_add_pi_div_two πŸ“–mathematicalβ€”sin
Complex
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
sin_add
cos_pi_div_two
MulZeroClass.mul_zero
sin_pi_div_two
mul_one
zero_add
sin_add_two_pi πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”sin_periodic
sin_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Complex
instAdd
instNeg
sin
ofReal
Real.pi
β€”sin_add
cos_pi
mul_neg
mul_one
sin_pi
MulZeroClass.mul_zero
add_zero
sin_eq_zero_iff_cos_eq πŸ“–mathematicalβ€”sin
Complex
instZero
cos
instOne
instNeg
β€”mul_self_eq_one_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sin_sq_add_cos_sq
sq
right_eq_add
AddRightCancelSemigroup.toIsRightCancelAdd
mul_eq_zero
sin_int_mul_pi πŸ“–mathematicalβ€”sin
Complex
instMul
instIntCast
ofReal
Real.pi
instZero
β€”Function.Antiperiodic.int_mul_eq_of_eq_zero
sin_antiperiodic
sin_zero
sin_int_mul_two_pi_sub πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_sub_eq
sin_periodic
sin_neg
sin_nat_mul_pi πŸ“–mathematicalβ€”sin
Complex
instMul
instNatCast
ofReal
Real.pi
instZero
β€”Function.Antiperiodic.nat_mul_eq_of_eq_zero
sin_antiperiodic
sin_zero
sin_nat_mul_two_pi_sub πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_sub_eq
sin_periodic
sin_neg
sin_periodic πŸ“–mathematicalβ€”Function.Periodic
Complex
instAdd
sin
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Antiperiodic.periodic_two_mul
sin_antiperiodic
sin_pi πŸ“–mathematicalβ€”sin
ofReal
Real.pi
Complex
instZero
β€”ofReal_sin
Real.sin_pi
sin_pi_div_two πŸ“–mathematicalβ€”sin
Complex
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
ofReal_sin
ofReal_div
Real.sin_pi_div_two
sin_pi_div_two_sub πŸ“–mathematicalβ€”sin
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
sin_add
sin_pi_div_two
cos_neg
one_mul
cos_pi_div_two
sin_neg
mul_neg
MulZeroClass.zero_mul
neg_zero
add_zero
sin_pi_sub πŸ“–mathematicalβ€”sin
Complex
instSub
ofReal
Real.pi
β€”Function.Antiperiodic.sub_eq'
sin_antiperiodic
sin_neg
neg_neg
sin_sub_int_mul_two_pi πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.sub_int_mul_eq
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_sub_nat_mul_two_pi πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.sub_nat_mul_eq
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_sub_pi πŸ“–mathematicalβ€”sin
Complex
instSub
ofReal
Real.pi
instNeg
β€”Function.Antiperiodic.sub_eq
sin_antiperiodic
sin_sub_pi_div_two πŸ“–mathematicalβ€”sin
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instNeg
cos
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
sin_add
cos_neg
cos_pi_div_two
MulZeroClass.mul_zero
sin_neg
sin_pi_div_two
mul_neg
mul_one
zero_add
sin_sub_two_pi πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Function.Periodic.sub_eq
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_two_pi πŸ“–mathematicalβ€”sin
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instZero
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
sin_add
sin_pi
cos_pi
mul_neg
mul_one
neg_zero
MulZeroClass.mul_zero
add_zero
sin_two_pi_sub πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.sub_eq'
sin_periodic
sin_neg
tan_add_int_mul_pi πŸ“–mathematicalβ€”tan
Complex
instAdd
instMul
instIntCast
ofReal
Real.pi
β€”Function.Periodic.int_mul
tan_periodic
tan_add_nat_mul_pi πŸ“–mathematicalβ€”tan
Complex
instAdd
instMul
instNatCast
ofReal
Real.pi
β€”Function.Periodic.nat_mul
tan_periodic
tan_add_pi πŸ“–mathematicalβ€”tan
Complex
instAdd
ofReal
Real.pi
β€”tan_periodic
tan_int_mul_pi πŸ“–mathematicalβ€”tan
Complex
instMul
instIntCast
ofReal
Real.pi
instZero
β€”Function.Periodic.int_mul_eq
tan_periodic
tan_zero
tan_int_mul_pi_sub πŸ“–mathematicalβ€”tan
Complex
instSub
instMul
instIntCast
ofReal
Real.pi
instNeg
β€”Function.Periodic.int_mul_sub_eq
tan_periodic
tan_neg
tan_nat_mul_pi πŸ“–mathematicalβ€”tan
Complex
instMul
instNatCast
ofReal
Real.pi
instZero
β€”Function.Periodic.nat_mul_eq
tan_periodic
tan_zero
tan_nat_mul_pi_sub πŸ“–mathematicalβ€”tan
Complex
instSub
instMul
instNatCast
ofReal
Real.pi
instNeg
β€”Function.Periodic.nat_mul_sub_eq
tan_periodic
tan_neg
tan_periodic πŸ“–mathematicalβ€”Function.Periodic
Complex
instAdd
tan
ofReal
Real.pi
β€”Function.Antiperiodic.div
sin_antiperiodic
cos_antiperiodic
tan_pi_div_two_sub πŸ“–mathematicalβ€”tan
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instInv
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
inv_div
sin_pi_div_two_sub
cos_pi_div_two_sub
tan_pi_sub πŸ“–mathematicalβ€”tan
Complex
instSub
ofReal
Real.pi
instNeg
β€”Function.Periodic.sub_eq'
tan_periodic
tan_neg
tan_sub_int_mul_pi πŸ“–mathematicalβ€”tan
Complex
instSub
instMul
instIntCast
ofReal
Real.pi
β€”Function.Periodic.sub_int_mul_eq
tan_periodic
tan_sub_nat_mul_pi πŸ“–mathematicalβ€”tan
Complex
instSub
instMul
instNatCast
ofReal
Real.pi
β€”Function.Periodic.sub_nat_mul_eq
tan_periodic
tan_sub_pi πŸ“–mathematicalβ€”tan
Complex
instSub
ofReal
Real.pi
β€”Function.Periodic.sub_eq
tan_periodic

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalRealPi πŸ“–CompOpβ€”

NNReal

Definitions

NameCategoryTheorems
pi πŸ“–CompOp
5 mathmath: pi_pos, coe_real_pi, Complex.volume_closedBall, Complex.volume_ball, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne

Theorems

NameKindAssumesProvesValidatesDepends On
coe_real_pi πŸ“–mathematicalβ€”toReal
pi
Real.pi
β€”β€”
pi_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
pi_pos
pi_pos πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
pi
β€”Nat.cast_zero
Real.pi_pos

Real

Definitions

NameCategoryTheorems
pi πŸ“–CompOp
1035 mathmath: cos_add_nat_mul_pi, Angle.abs_toReal_neg_coe_eq_self_iff, pi_div_four_le_arcsin, Polynomial.Chebyshev.isExtrOn_T_real_iff, Complex.cos_sub_pi, hasDerivAt_fourier, Complex.log_conj_eq_ite, Circle.periodic_exp, Sbtw.oangle₁₂₃_eq_pi, Orientation.oangle_eq_zero_or_eq_pi_iff_right_eq_smul, tan_pi_div_four, cos_pi_div_five, Polynomial.mahlerMeasure_def_of_ne_zero, EulerSine.integral_cos_mul_cos_pow, Complex.tendsto_log_nhdsWithin_im_neg_of_re_neg_of_im_zero, Complex.log_I, Complex.norm_circleTransformBoundingFunction_le, Angle.sign_two_zsmul_eq_sign_iff, Complex.log_neg_one, norm_torusIntegral_le_of_norm_le_const, EuclideanGeometry.Sphere.thales_theorem, completedZeta_eq_tsum_of_one_lt_re, mellin_eq_fourier, EuclideanGeometry.abs_oangle_right_toReal_lt_pi_div_two_of_dist_eq, pi_le_four, MeasureTheory.charFun_eq_fourierIntegral', hasFDerivAt_fourierChar_neg_bilinear_left, tan_pi_sub, arcsin_eq_pi_div_two_sub_arccos, EisensteinSeries.hasSum_e2Summand_symmetricIcc, InnerProductSpace.volume_closedBall_of_dim_even, Complex.Gammaℝ_def, Orientation.inner_rotation_pi_div_two_right_smul, Orientation.oangle_add_left_smul_rotation_pi_div_two, Complex.sin_pi_div_two_sub, HurwitzZeta.hasSum_int_cosKernelβ‚€, cos_add_pi, Complex.exp_eq_exp_iff_exists_int, InnerProductGeometry.angle_add_angle_sub_add_angle_sub_eq_pi, sin_pi_div_two, EuclideanGeometry.eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero, HurwitzZeta.LSeriesHasSum_cos, fourierIntegralInv_eq', Angle.two_zsmul_eq_pi_iff, InnerProductGeometry.angle_neg_self_of_nonzero, sin_add_two_pi, Angle.sin_add_pi_div_two, Stirling.factorial_isEquivalent_stirling, Complex.tan_nat_mul_pi_sub, norm_jacobiThetaβ‚‚_term_le, cos_sub_pi, Complex.norm_sub_mem_Icc_angle, cos_eq_zero_iff, rpow_eq_nhds_of_neg, norm_jacobiThetaβ‚‚_term_fderiv_ge, tan_int_mul_pi, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, AddCircle.homeomorphCircle'_apply_mk, neg_pi_div_two_eq_arcsin, Orientation.tan_oangle_add_left_smul_rotation_pi_div_two, Complex.cos_eq_one_iff, mapsTo_cos_Ioo, sin_periodic, ModularForm.eta_q_eq_pow, EuclideanGeometry.angle_le_pi, circleIntegral_def_Icc, ZMod.LFunction_one_sub, Complex.arg_neg_I, Gamma_nat_add_half, EuclideanGeometry.oangle_eq_pi_sub_two_zsmul_oangle_of_dist_eq, circleIntegrable_iff, Complex.tsum_exp_neg_mul_int_sq, fderiv_fourierChar_neg_bilinear_right_apply, cos_int_mul_two_pi, SchwartzMap.lineDerivOp_fourier_eq, NumberField.dedekindZeta_residue_def, Angle.sin_eq_zero_iff, Complex.tan_pi_sub, circleMap_neg_pi_div_two, Orientation.neg_rotation, GaussianFourier.integral_cexp_neg_mul_sq_norm, Sbtw.oangle_eq_add_pi_left, Function.Periodic.norm_qParam_le_of_one_half_le_im, Complex.angle_exp_one, circleIntegral.integral_sub_inv_of_mem_ball, hasSum_one_div_nat_pow_mul_fourier, Complex.cos_eq_zero_iff, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, Complex.cos_antiperiodic, Complex.cos_add_nat_mul_two_pi, TemperedDistribution.lineDerivOp_fourier_eq, HasProdUniformlyOn_sineTerm_prod_on_compact, HurwitzZeta.cosZeta_two_mul_nat, tendsto_cos_pi_div_two, Complex.norm_eq_one_iff', Complex.sin_eq_neg_one_iff, riemannZeta_two, isIntegral_two_mul_sin_rat_mul_pi, Orientation.tan_oangle_add_right_smul_rotation_pi_div_two, Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable_aux, fourierIntegral_gaussian_innerProductSpace', fourier_gaussian_pi', integral_log_sin_zero_pi_div_two, iteratedDerivWithin_tsum_cexp_eq, jacobiThetaβ‚‚_functional_equation, sin_two_pi, EuclideanGeometry.dist_eq_add_dist_iff_angle_eq_pi, EuclideanGeometry.pi_div_three_le_angle_of_le_of_le, Complex.sin_int_mul_pi, GaussianFourier.integral_cexp_neg_mul_sq_norm_add, Complex.sin_eq_zero_iff, NumberField.abs_discr_ge', sum_cauchyPowerSeries_eq_integral, Complex.tan_pi_div_two_sub, Angle.toReal_coe_eq_self_iff_mem_Ioc, vector_fourierIntegral_eq_integral_exp_smul, HurwitzZeta.evenKernel_def, range_arctan, fourier_real_eq_integral_exp_smul, pi_nonneg, NumberField.abs_discr_ge, Complex.arg_le_pi, AddCircle.homeomorphCircle'_symm_apply, Polynomial.Chebyshev.eval_T_real_eq_neg_one_iff, Orientation.oangle_eq_pi_iff_oangle_rev_eq_pi, Orientation.oangle_neg_right, HurwitzZeta.jacobiThetaβ‚‚'_functional_equation', Function.Periodic.norm_qParam_lt_iff, Wallis.W_le, Complex.cos_pi_div_two, sin_pi_sub, Circle.isAddQuotientCoveringMap_exp, sin_pi, hasSum_nat_jacobiTheta, fourier_deriv, Polynomial.Chebyshev.integral_T_real_mul_self_measureT_of_ne_zero, ZMod.stdAddChar_coe, DifferentiableOn.circleIntegral_sub_inv_smul, Angle.abs_toReal_eq_pi_div_two_iff, Angle.toReal_eq_pi_iff, Complex.neg_pi_div_two_lt_arg_iff, cos_add_int_mul_two_pi, integral_sin_pow_pos, Angle.abs_toReal_le_pi, Complex.integral_rpow_mul_exp_neg_rpow, sin_pi_div_three, Complex.arg_mul_eq_add_arg_iff, Complex.sin_nat_mul_pi, Circle.exp_eq_exp, Complex.tan_int_mul_pi, Complex.volume_sum_rpow_le, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, ModularForm.tsum_logDeriv_eta_q, Complex.mul_angle_le_norm_sub, Polynomial.Chebyshev.isLocalMin_T_real, Complex.integral_circleTransform, Polynomial.toAddCircle_X_pow_eq_fourier, Complex.arg_le_pi_div_two_iff, Angle.toReal_coe, HurwitzZeta.oddKernel_def', Circle.exp_two_pi_mul_int, arctan_mem_Ioo, fourier_gaussian_innerProductSpace, Complex.tan_nat_mul_pi, AddCircle.scaled_exp_map_periodic, InnerProductGeometry.norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two, Complex.isPrimitiveRoot_exp_rat, Orientation.neg_rotation_neg_pi_div_two, Polynomial.Chebyshev.integral_measureT_eq_integral_cos_of_continuous, VectorFourier.fourierPowSMulRight_eq_comp, Complex.mem_rootsOfUnity, sin_add_int_mul_pi, Polynomial.isRoot_cos_pi_div_five, Complex.sin_int_mul_two_pi_sub, image_circleMap_Ioc, neg_pi_div_two_lt_arctan, cos_nat_mul_two_pi_sub_pi, Complex.cos_nat_mul_two_pi_sub_pi, sin_antiperiodic, sin_sub_pi_div_two, Complex.circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable, tan_int_mul_pi_div_two, Wallis.tendsto_W_nhds_pi_div_two, Angle.sign_two_nsmul_eq_neg_sign_iff, cos_add_two_pi, isIntegral_two_mul_cos_rat_mul_pi, HurwitzZeta.hasSum_nat_sinZeta, Angle.toReal_pi, EuclideanGeometry.angle_orthogonalProjection_self, Complex.exp_antiperiodic, fourierCoeff_bernoulli_eq, Complex.exp_add_pi_mul_I, Complex.log_exp_eq_re_add_toIocMod, circleMap_eq_circleMap_iff, Gamma_mul_Gamma_add_half, Complex.log_inv_eq_ite, Orientation.oangle_eq_pi_iff_angle_eq_pi, two_mul_arctan_inv_2_sub_arctan_inv_7, EulerSine.integral_cos_mul_cos_pow_aux, SchwartzMap.fourier_lineDerivOp_eq, Angle.toReal_mem_Ioc, antitoneOn_cos, Angle.toReal_neg_pi_div_two, pi_lt_d6, Angle.sign_pi_sub, sin_add_nat_mul_pi, cos_nat_mul_pi, InnerProductGeometry.angle_le_pi, InnerProductGeometry.norm_add_eq_norm_sub_iff_angle_eq_pi_div_two, TemperedDistribution.fourierInv_lineDerivOp_eq, pi_div_two_le_two, Stirling.le_log_factorial_stirling, EuclideanGeometry.Sphere.IsTangentAt.angle_eq_pi_div_two, Complex.arg_of_re_neg_of_im_nonneg, riemannZeta_one_sub, arcsin_eq_pi_div_two, EuclideanSpace.volume_closedBall_fin_three, hasSum_zeta_four, cos_pi_div_four, Complex.tan_eq_zero_iff', Complex.cos_nat_mul_two_pi, Angle.sign_eq_zero_iff, Orientation.rotation_pi_apply, cauchyPowerSeries_apply, Angle.two_nsmul_toReal_eq_two_mul_sub_two_pi, tan_nat_mul_pi_sub, EuclideanGeometry.Sphere.oangle_eq_pi_sub_two_zsmul_oangle_center_left, arccos_eq_pi_div_two_sub_arcsin, Angle.sin_add_pi, Angle.toReal_coe_eq_self_iff, Gamma_mul_Gamma_one_sub, Complex.sin_sub_nat_mul_two_pi, DiffContOnCl.circleIntegral_sub_inv_smul, Complex.arg_neg_eq_arg_sub_pi_of_im_pos, Complex.ofReal_cpow_of_nonpos, arcsin_le_pi_div_two, Complex.sin_nat_mul_two_pi_sub, cos_two_pi, InnerProductGeometry.angle_neg_right, tsum_exp_neg_mul_int_sq, HurwitzZeta.expZeta_one_sub, EuclideanGeometry.oangle_eq_pi_iff_sbtw, arccos_image_Icc, InnerProductGeometry.angle_zero_right, cos_pi_div_sixteen, fourierIntegral_gaussian_pi, Angle.cos_add_pi, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow, Angle.two_zsmul_coe_pi, circleAverage_eq_circleIntegral, Angle.cos_add_pi_div_two, cos_two_pi_sub, arctan_add_arctan_lt_pi_div_two, Angle.two_nsmul_eq_zero_iff, Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod, VectorFourier.norm_iteratedFDeriv_fourierPowSMulRight, InnerProductGeometry.sin_eq_one_iff_angle_eq_pi_div_two, Complex.arg_cos_add_sin_mul_I_sub, Angle.cos_nonneg_iff_abs_toReal_le_pi_div_two, mellinInv_eq_fourierIntegralInv, Gamma_one_half_eq, cot_series_rep', pi_div_two_eq_arcsin, two_le_pi, Complex.cos_pi_sub, Complex.integral_exp_neg_rpow, polarCoord_target, Orientation.oangle_neg_self_left, pi_div_two_pos, Complex.hasDerivAt_Gammaℝ_one, arctan_eq_neg_pi_div_four, InnerProductGeometry.angle_add_le_pi_div_two_of_inner_eq_zero, Sbtw.oangle_eq_add_pi_right, circleMap_pi_div_two, riemannZeta_four, Angle.neg_pi_lt_toReal, HurwitzZeta.hasSum_nat_completedCosZeta, Polynomial.toAddCircle.integrable, Complex.cos_sub_two_pi, Complex.sin_sub_two_pi, Complex.sin_sub_pi_div_two, norm_cauchyPowerSeries_le, mellinInv_eq_fourierInv, Complex.abs_arg_le_pi, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, arccos_le_pi, fourier_gaussian_innerProductSpace', HurwitzZeta.hasSum_int_cosKernel, Angle.coe_eq_zero_iff, tendsto_integral_gaussian_smul', EuclideanGeometry.angle_le_pi_div_three_of_le_of_le, Polynomial.Chebyshev.isLocalMax_T_real, tendsto_cos_neg_pi_div_two, norm_jacobiThetaβ‚‚_term, Complex.exp_neg_pi_div_two_mul_I, ZetaAsymptotics.tendsto_Gamma_term_aux, tan_pi_div_two, Circle.exp_two_pi, arccos_le_pi_div_two, EisensteinSeries.D2_S, Polynomial.int_cyclotomic_rw, Complex.tan_int_mul_pi_div_two, EisensteinSeries.G2_S_transform, Complex.isIntegral_exp_rat_mul_pi_mul_I, DiffContOnCl.deriv_eq_smul_circleIntegral, EuclideanSpace.volume_closedBall_fin_two, DifferentiableOn.deriv_eq_smul_circleIntegral, sq_cos_pi_div_six, Angle.two_zsmul_toReal_eq_two_mul_sub_two_pi, abs_cos_int_mul_pi, Complex.cos_int_mul_two_pi_sub, Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero, tendsto_sin_neg_pi_div_two, Angle.cos_sub_pi, Stirling.le_factorial_stirling, EuclideanGeometry.angle_self_right, tendsto_logDeriv_euler_sin_div, fourierIntegral_iteratedDeriv, logDeriv_sin_div_eq_cot, HurwitzZeta.cosZeta_one_sub, EulerSine.sin_pi_mul_eq, Complex.arg_neg_eq_arg_add_pi_iff, HurwitzZeta.hasSum_nat_sinKernel, Complex.inv_cpow_eq_ite', Complex.isPrimitiveRoot_iff, arcsin_neg_one, Complex.exp_periodic, sin_nat_mul_two_pi_sub, norm_exp_mul_sq_le, Complex.exp_nat_mul_two_pi_mul_I, Complex.log_exp_eq_sub_toIocDiv, HurwitzKernelBounds.F_nat_one_le, isAlgebraic_tan_rat_mul_pi, Affine.Triangle.acuteAngled_iff_angle_lt, Polynomial.intervalIntegrable_mahlerMeasure, sin_pi_div_two_sub, Complex.isAlgebraic_sin_rat_mul_pi, arccos_eq_pi_div_two, Complex.isPrimitiveRoot_exp_of_isCoprime, circleIntegral.norm_integral_le_of_norm_le_const, arcsin_mem_Icc, InnerProductGeometry.sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, Sbtw.oangle₃₂₁_eq_pi, DiffContOnCl.circleIntegral_one_div_sub_center_pow_smul, arccos_neg, isAlgebraic_cos_rat_mul_pi, cos_pi_div_two, Angle.tan_sub_pi, Angle.sub_coe_pi_eq_add_coe_pi, rpow_def_of_neg, Angle.sign_coe_pi, Orientation.inner_rotation_pi_div_two_right, EuclideanGeometry.sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, Complex.arg_one_add_mem_Ioo, Function.Periodic.im_invQParam, Angle.sin_eq_iff_coe_eq_or_add_eq_pi, Complex.sin_two_pi, UpperHalfPlane.norm_exp_two_pi_I_lt_one, HurwitzZeta.hasSum_int_cosZeta, Angle.toReal_mem_Ioo_iff_sign_pos, Complex.arg_exp_mul_I, Complex.arg_of_re_neg_of_im_neg, EuclideanGeometry.oangle_eq_pi_iff_angle_eq_pi, pi_upper_bound_start, tan_sub_pi, pow_mul_norm_iteratedFDeriv_fourier_le, Angle.toReal_pi_div_two, pi_pos, Complex.cos_add_pi, ZetaAsymptotics.tendsto_riemannZeta_sub_one_div_Gammaℝ, Complex.tendsto_norm_tan_atTop, arctan_inv_of_neg, Angle.sign_sub_pi, Orientation.inner_rotation_pi_div_two_left, Complex.hasDerivAt_Gammaβ„‚_one, Complex.sin_add_two_pi, EisensteinSeries.hasSum_e2Summand_symmetricIco, ModularForm.eta_q_eq_cexp, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, arccos_le_pi_div_four, cos_int_mul_pi_sub, Complex.arg_lt_pi_div_two_iff, Complex.arg_mem_Ioc, InnerProductSpace.volume_ball, circleIntegral.norm_two_pi_i_inv_smul_integral_le_of_norm_le_const, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero, EisensteinSeries.q_expansion_riemannZeta, fourierIntegral_real_eq_integral_exp_smul, fourier_coe_apply, cos_pi_div_eight, deriv_fourierIntegral, norm_jacobiTheta_sub_one_le, HurwitzZeta.hasSum_nat_cosZeta, injOn_tan, Angle.toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff, hasSum_cauchyPowerSeries_integral, Complex.tan_sub_int_mul_pi, Complex.sin_eq_sin_iff, Circle.exp_inj, Angle.two_zsmul_neg_pi_div_two, Orientation.inner_rotation_pi_div_two_left_smul, EuclideanGeometry.Sphere.abs_oangle_center_left_toReal_lt_pi_div_two, InnerProductGeometry.inner_eq_neg_mul_norm_iff_angle_eq_pi, InnerProductGeometry.cos_eq_zero_iff_angle_eq_pi_div_two, InnerProductGeometry.angle_sub_le_pi_div_two_of_inner_eq_zero, HasProdLocallyUniformlyOn_euler_sin_prod, Circle.exp_add_two_pi, Complex.sin_pi_sub, Wallis.W_eq_integral_sin_pow_div_integral_sin_pow, has_antideriv_at_fourier_neg, Angle.two_zsmul_toReal_eq_two_mul, HurwitzZeta.hasSum_expZeta_of_one_lt_re, Complex.neg_pi_lt_arg, HurwitzZeta.hasSum_int_evenKernel, sin_nat_mul_pi, Complex.inv_cpow_eq_ite, hasSum_one_div_nat_pow_mul_cos, hasStrictDerivAt_const_rpow_of_neg, EuclideanGeometry.oangle_orthogonalProjection_self, ModularFormClass.exp_decay_sub_atImInfty, Circle.invOn_arg_exp, two_pi_pos, ProbabilityTheory.gaussianPDFReal_def, cos_eq_cos_iff, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty, Complex.two_pi_I_inv_smul_circleIntegral_sub_sq_inv_smul_of_differentiable, Complex.arg_neg_eq_arg_add_pi_of_im_neg, InnerProductGeometry.angle_zero_left, Complex.arg_conj, Complex.cos_sub_nat_mul_two_pi, EuclideanGeometry.sin_eq_one_iff_angle_eq_pi_div_two, sin_two_pi_sub, Complex.cos_int_mul_two_pi_add_pi, sinOrderIso_apply, hasDerivAt_fourier_neg, Angle.cos_eq_zero_iff, Angle.angle_eq_iff_two_pi_dvd_sub, InnerProductGeometry.cos_eq_neg_one_iff_angle_eq_pi, InnerProductSpace.volume_ball_of_dim_odd, Complex.arg_lt_pi_iff, SchwartzMap.fourierInv_lineDerivOp_eq, cos_int_mul_two_pi_add_pi, Complex.tendsto_euler_sin_prod, sin_eq_sin_iff, Complex.arg_eq_pi_div_two_iff, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, circleIntegral.norm_integral_lt_of_norm_le_const_of_lt, isBigO_at_im_infty_jacobiTheta_sub_one, Orientation.oangle_neg_left, Complex.tsum_exp_neg_quadratic, Angle.sin_coe_pi, circleAverage_def, Stirling.sqrt_pi_le_stirlingSeq, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, Complex.range_arg, Complex.isAddQuotientCoveringMap_exp, Complex.log_mul_eq_add_log_iff, Complex.cot_pi_eq_exp_ratio, pi_gt_d2, Complex.integral_exp_neg_mul_rpow, Complex.isIntegral_two_mul_sin_rat_mul_pi, EuclideanGeometry.oangle_add_oangle_add_oangle_eq_pi, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, EuclideanGeometry.oangle_eq_zero_or_eq_pi_iff_collinear, HurwitzZeta.hurwitzZetaEven_one_sub, EuclideanGeometry.Sphere.abs_oangle_center_right_toReal_lt_pi_div_two, Polynomial.Chebyshev.integral_eval_T_real_measureT_zero, HurwitzZeta.hasSum_int_sinKernel, tan_pi_div_two_sub, arcsin_of_le_neg_one, cos_pi_sub, sin_int_mul_two_pi_sub, cot_series_rep, Complex.conj_cpow_eq_ite, Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, cos_pi_div_six, range_arcsin, Complex.sin_antiperiodic, HurwitzZeta.LSeriesHasSum_exp, InnerProductGeometry.angle_add_lt_pi_div_two_of_inner_eq_zero, Complex.neg_pi_lt_log_im, arccos_eq_pi, InnerProductGeometry.norm_sub_eq_add_norm_iff_angle_eq_pi, bernoulliFourierCoeff_eq, circleAverage_eq_integral_add, Gamma_nat_add_one_add_half, Complex.isPrimitiveRoot_exp_of_coprime, Complex.tan_sub_nat_mul_pi, pi_lt_four, Polynomial.Chebyshev.rootMultiplicity_T_real, tan_periodic, periodic_circleMap, ModularForm.logDeriv_eta_eq_E2, TemperedDistribution.fourier_lineDerivOp_eq, Complex.sin_eq_one_iff, Angle.sign_two_nsmul_eq_sign_iff, Complex.volume_sum_rpow_lt, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow, fourier_iteratedDeriv, Complex.cos_periodic, integral_univ_inv_one_add_sq, sin_int_mul_pi_sub, arcsin_le_neg_pi_div_two, Complex.exp_pi_div_two_mul_I, Orientation.oangle_sub_right_smul_rotation_pi_div_two, Angle.sin_pi_div_two_sub, sin_add_pi_div_two, VectorFourier.fourierSMulRight_apply, Sbtw.angle₁₂₃_eq_pi, integral_cexp_quadratic, cos_sub_nat_mul_two_pi, Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable, Complex.tan_sub_pi, Unitary.openPartialHomeomorph_target, Complex.Gammaβ„‚_def, Complex.tan_add_pi, one_le_pi_div_two, pi_gt_sqrtTwoAddSeries, Complex.isPrimitiveRoot_exp_rat_of_even_num, EuclideanGeometry.cos_eq_neg_one_iff_angle_eq_pi, Complex.abs_arg_le_pi_div_two_iff, VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le, Angle.two_zsmul_eq_iff, hasDerivAt_fourier, Complex.isPrimitiveRoot_exp, Polynomial.Chebyshev.isMinOn_T_real, circleMap_neg_radius, Angle.two_nsmul_toReal_eq_two_mul_add_two_pi, Angle.sign_pi_add, Complex.isIntegral_exp_neg_rat_mul_pi_mul_I, tan_nat_mul_pi, mellin_eq_fourierIntegral, InnerProductGeometry.angle_eq_angle_add_angle_iff, HurwitzZeta.hasSum_nat_completedSinZeta, Orientation.oangle_neg_self_right, fourierIntegral_eq', NNReal.coe_real_pi, Polynomial.Chebyshev.isLocalExtr_T_real_iff, hasFPowerSeriesOn_cauchy_integral, arctan_inv_2_add_arctan_inv_3, arctan_one, Complex.circleIntegral_div_sub_of_differentiable_on_off_countable, contDiffOn_tsum_cexp, Complex.Gammaβ„‚_add_one, Complex.cos_add_pi_div_two, pi_lower_bound_start, Circle.argEquiv_symm_apply, AddCircle.toCircle_apply_mk, irrational_pi, Angle.two_nsmul_eq_pi_iff, Orientation.inner_smul_rotation_pi_div_two_right, fourierIntegral_gaussian_innerProductSpace, sin_pi_over_two_pow_succ, bijOn_sin, bijOn_cos, EisensteinSeries.qExpansion_identity_pnat, tan_add_int_mul_pi, iteratedDeriv_fourier, tan_pi_div_six, arccos_lt_pi, Orientation.oangle_eq_zero_or_eq_pi_iff_not_linearIndependent, InnerProductGeometry.angle_self_neg_of_nonzero, Complex.angle_le_mul_norm_sub, Angle.sign_two_zsmul_eq_neg_sign_iff, EuclideanSpace.volume_ball_fin_three, arctan_inv_sqrt_three, cot_pi_mul_contDiffWithinAt, cos_sub_int_mul_pi, integral_log_sin_zero_pi, InnerProductGeometry.angle_sub_lt_pi_div_two_of_inner_eq_zero, arcsin_of_one_le, pi_lt_d2, jacobiThetaβ‚‚'_add_left', Polynomial.toAddCircle_monomial_eq_smul_fourier, jacobiThetaβ‚‚'_functional_equation, Angle.abs_toReal_add_abs_toReal_eq_pi_of_two_zsmul_add_eq_zero_of_sign_eq, sin_sub_int_mul_pi, riemannZeta_one, tendsto_tan_pi_div_two, Orientation.neg_rotation_pi_div_two, ceil_pi_eq_four, cos_pi_div_thirty_two, Complex.sin_pi_div_two, NumberField.mixedEmbedding.polarSpaceCoord_target', Complex.sin_periodic, Complex.differentiable_on_off_countable_deriv_eq_smul_circleIntegral, Complex.cos_sub_pi_div_two, Orientation.oangle_sub_left_smul_rotation_pi_div_two, Angle.two_zsmul_toReal_eq_two_mul_add_two_pi, Polynomial.Chebyshev.isMaxOn_T_real, integral_sqrt_one_sub_sq, cos_nat_mul_pi_sub, Polynomial.Chebyshev.rootMultiplicity_U_real, Orientation.oangle_add_right_smul_rotation_pi_div_two, Complex.arg_neg_one, Orientation.inner_smul_rotation_pi_div_two_left, surjOn_sin, sin_pi_div_thirty_two, Complex.tan_int_mul_pi_sub, tendsto_logDeriv_euler_cot_sub, neg_pi_div_two_lt_arcsin, sin_pi_div_six, EulerSine.integral_cos_pow_eq, EuclideanGeometry.Sphere.oangle_eq_pi_sub_two_zsmul_oangle_center_right, image_tan_Ioo, sin_sub_pi, Probability.cauchyPDFReal_def', Angle.sin_eq_iff_eq_or_add_eq_pi, Complex.cos_int_mul_two_pi_sub_pi, Complex.cos_add_two_pi, pi_gt_d4, EuclideanGeometry.abs_oangle_left_toReal_lt_pi_div_two_of_dist_eq, Orientation.oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq, hasDerivAt_fourierChar, pi_lt_sqrtTwoAddSeries, injOn_sin, Complex.toIocMod_arg, EisensteinSeries.q_expansion_bernoulli, Angle.coe_toIocMod, EuclideanGeometry.cos_eq_zero_iff_angle_eq_pi_div_two, hasDerivAt_Gamma_one_half, EuclideanGeometry.angle_left_midpoint_eq_pi_div_two_of_dist_eq, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, HurwitzZeta.hasSum_int_oddKernel, Angle.sign_add_pi, Gamma_mul_Gamma_add_half_of_pos, Complex.abs_arg_lt_pi_div_two_iff, HurwitzZeta.sinZeta_two_mul_nat_add_one, lt_sin_mul, Angle.abs_toReal_coe_eq_self_iff, NumberField.exists_ideal_in_class_of_norm_le, EuclideanSpace.volume_ball_fin_two, Polynomial.fourierCoeff_toAddCircle_natCast, InnerProductGeometry.norm_add_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two, cos_nat_mul_two_pi_sub, norm_jacobiThetaβ‚‚'_term_le, completedRiemannZetaβ‚€_one, fourierCoeffOn_of_hasDerivAt_Ioo, tendsto_tan_neg_pi_div_two, cos_pi_over_two_pow, NumberField.Ideal.tendsto_norm_le_div_atTop, Angle.toIocMod_toReal, Complex.circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto, SchwartzMap.lineDerivOp_fourierInv_eq, tan_int_mul_pi_sub, EuclideanSpace.volume_ball, fourierChar_apply, Orientation.inner_eq_zero_iff_eq_zero_or_eq_smul_rotation_pi_div_two, Angle.sign_coe_pi_div_two, Angle.zsmul_eq_iff, Orientation.oangle_add_cyc3_neg_left, Circle.exp_int_mul_two_pi, GaussianFourier.integral_cexp_neg_mul_sq_add_real_mul_I, GaussianFourier.integral_cexp_neg_mul_sum_add, arccos_of_le_neg_one, ModularFormClass.qExpansion_coeff_eq_circleIntegral, Angle.eq_neg_self_iff, tendsto_arctan_atTop, isAlgebraic_sin_rat_mul_pi, surjOn_cos, fourierIntegral_gaussian, HurwitzKernelBounds.F_nat_zero_zero_sub_le, quadratic_root_cos_pi_div_five, cos_antiperiodic, cos_periodic, Complex.arg_inv, Complex.sin_add_int_mul_two_pi, HurwitzZeta.hurwitzZeta_one_sub, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, integral_gaussian_sq_complex, pi_gt_three, DiffContOnCl.two_pi_i_inv_smul_circleIntegral_sub_inv_smul, Orientation.eq_zero_or_oangle_eq_iff_inner_eq_zero, Complex.sin_pi, Sbtw.angle₃₂₁_eq_pi, Angle.neg_coe_pi, Complex.exp_pi_mul_I, pi_lt_d20, Complex.isPrimitiveRoot_exp_rat_of_odd_num, Complex.tan_add_int_mul_pi, cos_sub_nat_mul_pi, two_mul_arctan_sub_pi, tan_pi_div_three, Complex.isIntegral_two_mul_cos_rat_mul_pi, pi_div_two_le_arcsin, arccos_lt_pi_div_two, sin_add_nat_mul_two_pi, Complex.Gammaℝ_one_sub_mul_Gammaℝ_one_add, Complex.tan_add_nat_mul_pi, tan_eq_zero_iff, arccos_neg_one, Complex.circleTransformDeriv_periodic, Circle.surjOn_exp_neg_pi_pi, EuclideanGeometry.angle_midpoint_eq_pi, hasSum_one_div_nat_pow_mul_sin, Polynomial.Chebyshev.roots_T_real, tendsto_arctan_atBot, Complex.exp_sub_pi_mul_I, SchwartzMap.fderivCLM_fourier_eq, two_mul_arctan_add_pi, Angle.neg_eq_self_iff, pow_mul_norm_iteratedFDeriv_fourierIntegral_le, abs_sin_eq_one_iff, Complex.tan_eq_zero_iff, Complex.Gammaℝ_add_two, Angle.cos_pos_iff_abs_toReal_lt_pi_div_two, mapsTo_sin_Ioo, circleIntegral.norm_integral_le_of_norm_le_const', floor_pi_eq_three, EuclideanGeometry.Sphere.two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi, Angle.coe_toIcoMod, euler_sineTerm_tprod, hasSum_zeta_two, sin_eq_neg_one_iff, sin_pi_div_sixteen, EuclideanGeometry.collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi, two_mul_arctan_inv_3_add_arctan_inv_7, circleAverage_eq_intervalAverage, NumberField.abs_discr_ge_of_isTotallyComplex, Angle.cos_neg_iff_pi_div_two_lt_abs_toReal, cos_add_pi_div_two, arctan_inv_of_pos, tendsto_sum_pi_div_four, fourierChar_apply', Angle.tan_coe_pi, cos_sub_two_pi, Angle.cos_pi_div_two_sub, integral_sin_pow_succ_le, EuclideanGeometry.oangle_self_orthogonalProjection, Complex.exp_rat_mul_pi_mul_I_pow_two_mul_den, cos_int_mul_two_pi_sub_pi, circleIntegrable_def, VectorFourier.fourierPowSMulRight_apply, sin_sub_nat_mul_pi, strictConcaveOn_sin_Icc, pi_gt_d20, EisensteinSeries.G2_eq_tsum_cexp, integral_gaussian, arcsin_lt_pi_div_two, tan_sub_nat_mul_pi, Function.Periodic.norm_qParam, Complex.circleIntegral_one_div_sub_center_pow_smul_of_differentiable_on_off_countable, arctan_lt_pi_div_two, Complex.sin_sub_pi, EisensteinSeries.qExpansion_identity, Circle.argPartialEquiv_target, Polynomial.Chebyshev.eval_T_real_eq_one_iff, GaussianFourier.integral_cexp_neg_sum_mul_add, arctan_sqrt_three, Complex.cos_pi_div_two_sub, EuclideanGeometry.pi_div_three_lt_angle_of_le_of_le_of_ne, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, cos_eq_one_iff, rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar_val, Complex.integral_rpow_mul_exp_neg_mul_rpow, EulerSine.integral_cos_pow_pos, HurwitzZeta.hasSum_int_sinZeta, sin_sq_pi_over_two_pow, sq_sin_pi_div_three, ZMod.toCircle_intCast, iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum, ZMod.toCircle_natCast, deriv_fourierChar, jacobiTheta_eq_tsum_nat, Complex.neg_pi_div_two_le_arg_iff, EuclideanGeometry.Sphere.IsTangentAt_iff_angle_eq_pi_div_two, monotoneOn_sin, cos_nat_mul_two_pi_add_pi, Complex.hasDerivAt_Gamma_one_half, Orientation.oangle_smul_add_right_eq_zero_or_eq_pi_iff, Angle.coe_two_pi, tendsto_integral_gaussian_smul, Complex.sin_sub_int_mul_two_pi, bernoulliFourierCoeff_recurrence, sin_nat_mul_pi_sub, arcsin_image_Icc, Complex.Gamma_mul_Gamma_add_half, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, sin_eq_zero_iff, tendsto_abs_tan_atTop, Complex.sin_two_pi_sub, Angle.eq_add_pi_of_two_zsmul_eq_of_sign_eq_neg, cos_sub_int_mul_two_pi, VectorFourier.norm_fourierSMulRight_le, EuclideanGeometry.angle_lt_pi_div_three_of_le_of_le_of_ne, HurwitzZeta.sinKernel_def, irrational_cos_rat_mul_pi, Complex.arg_ofReal_of_neg, neg_pi_div_two_le_arcsin, EuclideanGeometry.angle_self_orthogonalProjection, fourier_coe_apply', NumberField.abs_discr_rpow_ge_of_isTotallyComplex, TemperedDistribution.lineDerivOp_fourierInv_eq, HurwitzKernelBounds.F_nat_zero_le, Orientation.abs_oangle_sub_left_toReal_lt_pi_div_two, integral_sin_pow_odd, strictAntiOn_cos, Angle.nsmul_toReal_eq_mul, VectorFourier.norm_fourierPowSMulRight_le, integral_gaussian_complex, summable_pow_mul_jacobiThetaβ‚‚_term_bound, Angle.abs_toReal_add_abs_toReal_eq_pi_of_two_nsmul_add_eq_zero_of_sign_eq, hasFDerivAt_fourierChar_neg_bilinear_right, summable_bernoulli_fourier, Orientation.rotation_pi_div_two, VectorFourier.norm_fourierSMulRight, ZMod.toCircle_apply, InnerProductSpace.volume_closedBall, cos_int_mul_two_pi_sub, circleIntegral.integral_sub_center_inv, Complex.isAlgebraic_tan_rat_mul_pi, completedRiemannZeta_one, EuclideanGeometry.angle_right_midpoint_eq_pi_div_two_of_dist_eq, Orientation.oangle_eq_pi_iff_sameRay_neg, SchwartzMap.fourier_fderivCLM_eq, Complex.Gammaℝ_div_Gammaℝ_one_sub, iteratedDeriv_fourierIntegral, InnerProductSpace.volume_closedBall_of_dim_odd, tendsto_euler_sin_prod, cosPartialEquiv_source, sin_pi_div_eight, Complex.cos_eq_neg_one_iff, Complex.Gamma_mul_Gamma_one_sub, Complex.arg_eq_nhds_of_re_neg_of_im_pos, arctan_eq_pi_div_four, integral_Ioi_inv_one_add_sq, Complex.log_neg_I, Complex.volume_sum_rpow_lt_one, rpow_def_of_nonpos, jacobiThetaβ‚‚_add_left', hasSum_one_div_pow_mul_fourier_mul_bernoulliFun, Polynomial.Chebyshev.integral_eval_T_real_mul_self_measureT_zero, Angle.abs_toReal_add_eq_two_pi_sub_abs_toReal_add_abs_toReal, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, Polynomial.Chebyshev.isLocalExtr_T_real, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, Complex.exp_two_pi_mul_I, Complex.arg_exp, Complex.tendsto_log_nhdsWithin_im_nonneg_of_re_neg_of_im_zero, EuclideanGeometry.Sphere.angle_eq_pi_div_two_iff_mem_sphere_of_isDiameter, tan_add_nat_mul_pi, IsPrimitiveRoot.arg, tendsto_sin_pi_div_two, Angle.cos_sub_pi_div_two, arccos_zero, Polynomial.Chebyshev.isExtrOn_T_real, Orientation.inner_smul_rotation_pi_div_two_smul_left, Polynomial.instTwoPiPos, integral_gaussian_Ioi, arctan_add_eq_sub_pi, Circle.exp_eq_one, strictMonoOn_sin, Polynomial.toAddCircle_X_eq_fourier_one, EuclideanGeometry.oangle_eq_pi_iff_oangle_rev_eq_pi, unitary.norm_argSelfAdjoint_le_pi, Orientation.inner_smul_rotation_pi_div_two_smul_right, Angle.two_zsmul_eq_zero_iff, CircleIntegrable.out, Angle.toReal_le_pi, hasDerivAt_fourierIntegral, Complex.cos_nat_mul_two_pi_sub, cos_add_nat_mul_two_pi, Affine.Simplex.Equilateral.angle_eq_pi_div_three, fourierCoeffOn_of_hasDerivAt, Angle.two_nsmul_neg_pi_div_two, Complex.image_exp_Ioc_eq_sphere, CuspFormClass.exp_decay_atImInfty, InnerProductGeometry.angle_eq_pi_iff, Unitary.norm_argSelfAdjoint_le_pi, Complex.two_pi_I_inv_smul_circleIntegral_sub_inv_smul_of_differentiable_on_off_countable, Angle.tan_add_pi, Angle.toReal_coe_eq_self_add_two_pi_iff, Complex.exp_eq_one_iff, Complex.cos_nat_mul_two_pi_add_pi, Complex.inv_Gammaℝ_one_sub, Angle.sin_antiperiodic, DifferentiableOn.circleIntegral_one_div_sub_center_pow_smul, strictMonoOn_tan, Complex.exp_mul_I_antiperiodic, integral_Iic_inv_one_add_sq, Complex.arg_eq_nhds_of_re_neg_of_im_neg, isIntegral_two_mul_cos_rat_mul_pi, cos_eq_neg_one_iff, abs_cos_eq_one_iff, Complex.isAlgebraic_cos_rat_mul_pi, Complex.log_im_le_pi, sin_sub_two_pi, HurwitzZeta.hasSum_int_completedCosZeta, TorusIntegrable.function_integrable, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, Stirling.tendsto_stirlingSeq_sqrt_pi, HurwitzZeta.LSeriesHasSum_sin, hasStrictFDerivAt_rpow_of_neg, Complex.arg_mul_cos_add_sin_mul_I_sub, Angle.two_nsmul_coe_pi, cos_pi_div_three, Complex.cos_two_pi_sub, le_sin_mul, riemannZeta_two_mul_nat, Angle.toReal_eq_pi_div_two_iff, ModularForm.logDeriv_qParam, NumberField.mixedEmbedding.polarCoordReal_target, hasSum_zeta_nat, sin_add_pi, tendsto_euler_sin_prod', cos_add_int_mul_pi, Complex.polarCoord_target, Angle.toReal_coe_eq_self_sub_two_pi_iff, AddChar.zmod_intCast, surjOn_tan, arcsin_eq_neg_pi_div_two, HurwitzZeta.hurwitzZetaOdd_one_sub, Angle.sin_eq_real_sin_iff_eq_or_add_eq_pi, sin_sub_int_mul_two_pi, HurwitzZeta.hasSum_int_completedSinZeta, fourierInv_eq', fourierIntegral_deriv, Complex.tan_periodic, Polynomial.toAddCircle_C_eq_smul_fourier_zero, EuclideanGeometry.Sphere.angle_eq_pi_div_two_iff_mem_sphere_ofDiameter, Angle.cos_antiperiodic, Orientation.rotation_pi, Complex.sin_add_nat_mul_two_pi, cos_sub_pi_div_two, strictConcaveOn_cos_Icc, EuclideanGeometry.angle_lt_pi_of_not_collinear, AddCircle.homeomorphCircle'_apply, injOn_cos, EuclideanGeometry.angle_self_left, Complex.exp_mul_I_periodic, sin_eq_one_iff, tan_pi, HurwitzZeta.hasSum_nat_cosKernelβ‚€, InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two, Angle.sin_sub_pi_div_two, cos_nat_mul_two_pi, Circle.exp_sub_two_pi, Complex.cos_eq_cos_iff, Polynomial.fourierCoeff_toAddCircle, summable_pow_mul_cexp, sin_add_int_mul_two_pi, HurwitzZeta.sinZeta_one_sub, tendsto_prod_pi_div_two, Polynomial.Chebyshev.roots_U_real_nodup, Orientation.eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero, Angle.tan_periodic, cos_pi, tan_sub_int_mul_pi, Angle.coe_pi_add_coe_pi, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, Complex.inv_Gammaℝ_two_sub, VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le, fderiv_fourierChar_neg_bilinear_left_apply, Complex.Gamma_one_half_eq, cos_int_mul_pi, Polynomial.Chebyshev.roots_T_real_nodup, cos_pi_div_two_sub, fourier_eq', Complex.cos_int_mul_two_pi, integral_sin_pow_antitone, Complex.arg_neg_eq_arg_sub_pi_iff, InnerProductSpace.volume_ball_of_dim_even, Complex.cos_two_pi, EuclideanSpace.volume_closedBall, Complex.cos_add_int_mul_two_pi, Angle.toReal_eq_neg_pi_div_two_iff, Orientation.oangle_add_cyc3_neg_right, fourierCoeffOn_of_hasDeriv_right, Complex.arg_I, Complex.arg_eq_pi_iff, Complex.exp_int_mul_two_pi_mul_I, Complex.arg_cos_add_sin_mul_I_eq_toIocMod, Circle.argEquiv_apply_coe, round_pi_eq_three, EuclideanGeometry.dist_sq_eq_dist_sq_add_dist_sq_iff_angle_eq_pi_div_two, Complex.log_exp_exists, four_mul_arctan_inv_5_sub_arctan_inv_239, fourier_gaussian_pi, IsPrimitiveRoot.arg_eq_pi_iff, EuclideanGeometry.angle_add_angle_add_angle_eq_pi, ZMod.toCircle_eq_circleExp, Polynomial.Chebyshev.roots_U_real, deriv_fourier, Angle.two_nsmul_eq_iff, pi_gt_d6, tan_eq_zero_iff', Complex.arg_eq_neg_pi_div_two_iff, EulerSine.integral_cos_mul_cos_pow_even, integral_sin_pow_even, Angle.two_nsmul_toReal_eq_two_mul, Angle.sign_coe_neg_pi_div_two, Complex.Gammaβ„‚_one, pi_lt_d4, Angle.sign_antiperiodic, EuclideanGeometry.angle_eq_pi_iff_sbtw, hasSum_L_function_mod_four_eval_three, Complex.cos_pi, Orientation.abs_oangle_sub_right_toReal_lt_pi_div_two, Polynomial.Chebyshev.abs_eval_T_real_eq_one_iff, fourierIntegral_gaussian_pi', Function.Periodic.exp_decay_sub_of_bounded_at_inf, sin_int_mul_pi, integral_gaussian_complex_Ioi, log_doublingGamma_eq, InnerProductGeometry.angle_neg_left, arcsin_one, Complex.arg_eq_pi_iff_lt_zero, Function.Periodic.exp_decay_of_zero_at_inf, Complex.sin_add_pi, coe_sinOrderIso_apply, Polynomial.Chebyshev.eval_T_real_cos_int_mul_pi_div, differentiableAt_iteratedDerivWithin_cexp, pi_mul_cot_pi_q_exp, Wallis.le_W, Angle.nsmul_eq_iff, sin_pi_div_four, Complex.cos_sub_int_mul_two_pi, norm_jacobiThetaβ‚‚_term_fderiv_le, Complex.sin_add_pi_div_two, GaussianFourier.integral_rexp_neg_mul_sq_norm, HurwitzZeta.hasSum_int_evenKernelβ‚€, tan_add_pi, sin_sq_pi_over_two_pow_succ, Angle.sin_sub_pi, Complex.arg_neg_coe_angle, Complex.angle_exp_exp, Angle.cos_coe_pi, continuousOn_tan_Ioo, Polynomial.fourierCoeff_toAddCircle_eq_zero_of_lt_zero, Probability.cauchyPDFReal_def, arctan_add_eq_add_pi, sin_sub_nat_mul_two_pi, EisensteinSeries.tsum_symmetricIco_tsum_sub_eq
sinOrderIso πŸ“–CompOp
2 mathmath: sinOrderIso_apply, coe_sinOrderIso_apply
sqrtTwoAddSeries πŸ“–CompOp
14 mathmath: sqrtTwoAddSeries_zero, sqrtTwoAddSeries_two, sqrtTwoAddSeries_zero_nonneg, sqrtTwoAddSeries_succ, pi_gt_sqrtTwoAddSeries, sin_pi_over_two_pow_succ, sqrtTwoAddSeries_one, pi_lt_sqrtTwoAddSeries, cos_pi_over_two_pow, sqrtTwoAddSeries_lt_two, sqrtTwoAddSeries_nonneg, sin_sq_pi_over_two_pow, sqrtTwoAddSeries_monotone_left, sin_sq_pi_over_two_pow_succ
termΟ€ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abs_cos_int_mul_pi πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
cos
instMul
instIntCast
pi
instOne
β€”abs_cos_eq_sqrt_one_sub_sin_sq
sin_int_mul_pi
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
sub_zero
sqrt_one
abs_sin_eq_sin_abs_of_abs_le_pi πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
pi
sinβ€”lt_or_ge
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_neg
abs_of_nonpos
sin_nonpos_of_nonpos_of_neg_pi_le
LT.lt.le
abs_le
abs_of_nonneg
sin_nonneg_of_nonneg_of_le_pi
abs_sin_half πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
sin
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instSub
instOne
cos
β€”Nat.instAtLeastTwoHAddOfNat
sqrt_sq_eq_abs
sin_sq_eq_half_sub
two_mul
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
sub_div
antitoneOn_cos πŸ“–mathematicalβ€”AntitoneOn
Real
instPreorder
cos
Set.Icc
instZero
pi
β€”StrictAntiOn.antitoneOn
strictAntiOn_cos
bijOn_cos πŸ“–mathematicalβ€”Set.BijOn
Real
cos
Set.Icc
instPreorder
instZero
pi
instNeg
instOne
β€”mapsTo_cos
injOn_cos
surjOn_cos
bijOn_sin πŸ“–mathematicalβ€”Set.BijOn
Real
sin
Set.Icc
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
mapsTo_sin
injOn_sin
surjOn_sin
coe_sinOrderIso_apply πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
instPreorder
instNeg
instOne
DFunLike.coe
OrderIso
Set.Elem
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instLE
instFunLikeOrderIso
sinOrderIso
sin
β€”Nat.instAtLeastTwoHAddOfNat
continuousOn_cos πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
cos
β€”Continuous.continuousOn
continuous_cos
continuousOn_sin πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sin
β€”Continuous.continuousOn
continuous_sin
continuous_cos πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
cos
β€”Continuous.comp
Complex.continuous_re
Complex.continuous_cos
Complex.continuous_ofReal
continuous_cosh πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
cosh
β€”Continuous.comp
Complex.continuous_re
Complex.continuous_cosh
Complex.continuous_ofReal
continuous_sin πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sin
β€”Continuous.comp
Complex.continuous_re
Complex.continuous_sin
Complex.continuous_ofReal
continuous_sinh πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sinh
β€”Continuous.comp
Complex.continuous_re
Complex.continuous_sinh
Complex.continuous_ofReal
cos_add_int_mul_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instIntCast
pi
DivInvMonoid.toZPow
instDivInvMonoid
instNeg
instOne
β€”Function.Antiperiodic.add_int_mul_eq
cos_antiperiodic
Int.cast_negOnePow
cos_add_int_mul_two_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.int_mul
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_add_nat_mul_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instNatCast
pi
Monoid.toNatPow
instMonoid
instNeg
instOne
β€”Function.Antiperiodic.add_nat_mul_eq
cos_antiperiodic
cos_add_nat_mul_two_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.nat_mul
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_add_pi πŸ“–mathematicalβ€”cos
Real
instAdd
pi
instNeg
β€”cos_antiperiodic
cos_add_pi_div_two πŸ“–mathematicalβ€”cos
Real
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instNeg
sin
β€”Nat.instAtLeastTwoHAddOfNat
cos_add
cos_pi_div_two
MulZeroClass.mul_zero
sin_pi_div_two
mul_one
zero_sub
cos_add_two_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”cos_periodic
cos_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Real
instAdd
instNeg
cos
pi
β€”cos_add
cos_pi
mul_neg
mul_one
sin_pi
MulZeroClass.mul_zero
sub_zero
cos_eq_one_iff πŸ“–mathematicalβ€”cos
Real
instOne
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Nat.instAtLeastTwoHAddOfNat
sin_eq_zero_iff
sin_eq_zero_iff_cos_eq
Int.emod_two_eq_zero_or_one
mul_assoc
Int.cast_two
Int.cast_mul
cos_int_mul_two_pi_add_pi
mul_comm
add_comm
one_mul
add_mul
Distrib.rightDistribClass
Int.cast_one
Int.cast_add
Mathlib.Meta.NormNum.isInt_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
cos_int_mul_two_pi
cos_eq_one_iff_of_lt_of_lt πŸ“–mathematicalReal
instLT
instNeg
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
cos
instOne
instZero
β€”Nat.instAtLeastTwoHAddOfNat
cos_eq_one_iff
Int.cast_zero
MulZeroClass.zero_mul
le_antisymm
Nat.cast_one
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
mul_lt_iff_lt_one_left
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
two_pi_pos
neg_mul_eq_neg_mul
neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
cos_zero
cos_eq_sqrt_one_sub_sin_sq πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
sqrt
instSub
instOne
Monoid.toNatPow
instMonoid
sin
β€”Nat.instAtLeastTwoHAddOfNat
abs_cos_eq_sqrt_one_sub_sin_sq
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cos_nonneg_of_mem_Icc
cos_eq_zero_iff_sin_eq πŸ“–mathematicalβ€”cos
Real
instZero
sin
instOne
instNeg
β€”mul_self_eq_one_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sin_sq_add_cos_sq
sq
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_eq_zero
cos_half πŸ“–mathematicalReal
instLE
instNeg
pi
cos
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instAdd
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_nonneg_of_mem_Icc
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
sqrt_sq
cos_sq
add_div
two_mul
add_halves
CharZero.NeZero.two
cos_int_mul_pi πŸ“–mathematicalβ€”cos
Real
instMul
instIntCast
pi
DivInvMonoid.toZPow
instDivInvMonoid
instNeg
instOne
β€”zero_add
cos_zero
mul_one
cos_add_int_mul_pi
cos_int_mul_pi_sub πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instIntCast
pi
DivInvMonoid.toZPow
instDivInvMonoid
instNeg
instOne
β€”Function.Antiperiodic.int_mul_sub_eq
cos_antiperiodic
cos_neg
Int.cast_negOnePow
cos_int_mul_two_pi πŸ“–mathematicalβ€”cos
Real
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_eq
cos_periodic
cos_zero
cos_int_mul_two_pi_add_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.add_antiperiod_eq
Function.Periodic.int_mul
cos_periodic
cos_antiperiodic
cos_int_mul_two_pi_sub πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_sub_eq
cos_periodic
cos_neg
cos_int_mul_two_pi_sub_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.sub_antiperiod_eq
Function.Periodic.int_mul
cos_periodic
cos_antiperiodic
cos_le_cos_of_nonneg_of_le_pi πŸ“–mathematicalReal
instLE
instZero
pi
cosβ€”StrictAntiOn.le_iff_ge
strictAntiOn_cos
LE.le.trans
cos_lt_cos_of_nonneg_of_le_pi πŸ“–mathematicalReal
instLE
instZero
pi
instLT
cosβ€”Nat.instAtLeastTwoHAddOfNat
sin_pi_div_two_sub
sin_lt_sin_of_lt_of_le_pi_div_two
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
lt_of_not_ge
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
cos_lt_cos_of_nonneg_of_le_pi_div_two πŸ“–mathematicalReal
instLE
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instLT
cosβ€”Nat.instAtLeastTwoHAddOfNat
cos_lt_cos_of_nonneg_of_le_pi
LE.le.trans
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
cos_mem_Icc πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
instPreorder
instNeg
instOne
cos
β€”neg_one_le_cos
cos_le_one
cos_nat_mul_pi πŸ“–mathematicalβ€”cos
Real
instMul
instNatCast
pi
Monoid.toNatPow
instMonoid
instNeg
instOne
β€”zero_add
cos_zero
mul_one
cos_add_nat_mul_pi
cos_nat_mul_pi_sub πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instNatCast
pi
Monoid.toNatPow
instMonoid
instNeg
instOne
β€”Function.Antiperiodic.nat_mul_sub_eq
cos_antiperiodic
cos_neg
cos_nat_mul_two_pi πŸ“–mathematicalβ€”cos
Real
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_eq
cos_periodic
cos_zero
cos_nat_mul_two_pi_add_pi πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.add_antiperiod_eq
Function.Periodic.nat_mul
cos_periodic
cos_antiperiodic
cos_nat_mul_two_pi_sub πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_sub_eq
cos_periodic
cos_neg
cos_nat_mul_two_pi_sub_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
Function.Periodic.sub_antiperiod_eq
Function.Periodic.nat_mul
cos_periodic
cos_antiperiodic
cos_neg_of_pi_div_two_lt_of_lt πŸ“–mathematicalReal
instLT
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
cos
instZero
β€”Nat.instAtLeastTwoHAddOfNat
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cos_pos_of_mem_Ioo
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
cos_pi_sub
cos_nonneg_of_mem_Icc πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instLE
instZero
cos
β€”Nat.instAtLeastTwoHAddOfNat
sin_nonneg_of_mem_Icc
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
sin_add_pi_div_two
cos_nonneg_of_neg_pi_div_two_le_of_le πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
cos
β€”Nat.instAtLeastTwoHAddOfNat
cos_nonneg_of_mem_Icc
cos_nonpos_of_pi_div_two_le_of_le πŸ“–mathematicalReal
instLE
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
cos
instZero
β€”Nat.instAtLeastTwoHAddOfNat
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cos_nonneg_of_mem_Icc
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
cos_pi_sub
cos_periodic πŸ“–mathematicalβ€”Function.Periodic
Real
instAdd
cos
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Antiperiodic.periodic_two_mul
cos_antiperiodic
cos_pi πŸ“–mathematicalβ€”cos
pi
Real
instNeg
instOne
β€”Nat.instAtLeastTwoHAddOfNat
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
mul_div_assoc
cos_two_mul
cos_pi_div_two
Mathlib.Meta.NormNum.isInt_eq_true
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Nat.cast_zero
Mathlib.Meta.NormNum.zero_natPow
Nat.cast_one
Mathlib.Meta.NormNum.isInt_neg
cos_pi_div_eight πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit1
cos_pi_over_two_pow
add_zero
cos_pi_div_five πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
instOne
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
sq
neg_mul
sub_eq_add_neg
quadratic_root_cos_pi_div_five
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.intPow_negOfNat_bit0
Mathlib.Meta.NormNum.natPow_one
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.isNat_mul
Nat.cast_one
mul_mul_mul_comm
mul_self_sqrt
Mathlib.Meta.NormNum.isNat_le_true
instIsOrderedRing
Nat.cast_zero
quadratic_eq_zero_iff
CharZero.NeZero.two
RCLike.charZero_rclike
neg_neg
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
CancelDenoms.derive_trans
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.add_subst
CancelDenoms.mul_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Tactic.Linarith.mul_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
cos_nonneg_of_mem_Icc
le_of_not_gt
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
LT.lt.le
pi_pos
not_le
div_neg_of_neg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
cos_pi_div_four πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
cos_pi_over_two_pow
add_zero
cos_pi_div_six πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
div_mul_eq_div_div
cos_half
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
pi_pos
cos_pi_div_three
one_add_div
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
two_add_one_eq_three
sqrt_div
sqrt_mul_self
cos_pi_div_sixteen πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
cos_pi_over_two_pow
add_zero
cos_pi_div_thirty_two πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNatPowT.bit1
cos_pi_over_two_pow
add_zero
cos_pi_div_three πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
Mathlib.Tactic.Linarith.mul_eq
instIsOrderedRing
neg_eq_zero
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
sub_eq_zero_of_eq
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.mul_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
CancelDenoms.add_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
cos_pi
cos_three_mul
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
CancelDenoms.div_subst
Mathlib.Tactic.Linarith.mul_neg
instIsStrictOrderedRing
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
cos_lt_cos_of_nonneg_of_le_pi
le_of_not_gt
Mathlib.Tactic.Linarith.add_neg
pi_pos
le_rfl
lt_of_not_ge
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
cos_pi_div_two πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”Nat.instAtLeastTwoHAddOfNat
exists_cos_eq_zero
pi.eq_1
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
cos_pi_div_two_sub πŸ“–mathematicalβ€”cos
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”Nat.instAtLeastTwoHAddOfNat
cos_neg
neg_sub
cos_sub_pi_div_two
cos_pi_over_two_pow πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrtTwoAddSeries
instZero
β€”Nat.instAtLeastTwoHAddOfNat
zero_add
pow_one
cos_pi_div_two
zero_div
one_lt_powβ‚€
instZeroLEOneClass
IsOrderedRing.toPosMulMono
instIsOrderedRing
one_lt_two
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
div_lt_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pi_pos
div_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
pow_succ
div_mul_eq_div_div
cos_half
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isRat_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.neg_subst
sqrtTwoAddSeries.eq_2
add_div_eq_mul_add_div
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
one_mul
sqrt_div
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_nonpos_of_le
sqrtTwoAddSeries_nonneg
le_rfl
sqrt_mul_self
cos_pi_sub πŸ“–mathematicalβ€”cos
Real
instSub
pi
instNeg
β€”Function.Antiperiodic.sub_eq'
cos_antiperiodic
cos_neg
cos_pos_of_mem_Ioo πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instLT
instZero
cos
β€”Nat.instAtLeastTwoHAddOfNat
sin_pos_of_mem_Ioo
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
sin_add_pi_div_two
cos_sub_int_mul_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instIntCast
pi
DivInvMonoid.toZPow
instDivInvMonoid
instNeg
instOne
β€”Function.Antiperiodic.sub_int_mul_eq
cos_antiperiodic
Int.cast_negOnePow
cos_sub_int_mul_two_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.sub_int_mul_eq
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_sub_nat_mul_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instNatCast
pi
Monoid.toNatPow
instMonoid
instNeg
instOne
β€”Function.Antiperiodic.sub_nat_mul_eq
cos_antiperiodic
cos_sub_nat_mul_two_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.sub_nat_mul_eq
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_sub_pi πŸ“–mathematicalβ€”cos
Real
instSub
pi
instNeg
β€”Function.Antiperiodic.sub_eq
cos_antiperiodic
cos_sub_pi_div_two πŸ“–mathematicalβ€”cos
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
cos_add
cos_neg
cos_pi_div_two
MulZeroClass.mul_zero
sin_neg
sin_pi_div_two
mul_neg
mul_one
neg_neg
zero_add
cos_sub_two_pi πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.sub_eq
Nat.instAtLeastTwoHAddOfNat
cos_periodic
cos_two_pi πŸ“–mathematicalβ€”cos
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instOne
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
cos_add
cos_pi
mul_neg
mul_one
neg_neg
sin_pi
MulZeroClass.mul_zero
sub_zero
cos_two_pi_sub πŸ“–mathematicalβ€”cos
Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.sub_eq'
cos_periodic
cos_neg
exists_cos_eq_zero πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.image
cos
Set.Icc
instPreorder
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”intermediate_value_Icc'
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
instZeroLEOneClass
RCLike.charZero_rclike
continuousOn_cos
le_of_lt
cos_two_neg
cos_one_pos
injOn_cos πŸ“–mathematicalβ€”Set.InjOn
Real
cos
Set.Icc
instPreorder
instZero
pi
β€”StrictAntiOn.injOn
strictAntiOn_cos
injOn_sin πŸ“–mathematicalβ€”Set.InjOn
Real
sin
Set.Icc
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”StrictMonoOn.injOn
Nat.instAtLeastTwoHAddOfNat
strictMonoOn_sin
injOn_tan πŸ“–mathematicalβ€”Set.InjOn
Real
tan
Set.Ioo
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”StrictMonoOn.injOn
Nat.instAtLeastTwoHAddOfNat
strictMonoOn_tan
mapsTo_cos πŸ“–mathematicalβ€”Set.MapsTo
Real
cos
Set.Icc
instPreorder
instNeg
instOne
β€”cos_mem_Icc
mapsTo_sin πŸ“–mathematicalβ€”Set.MapsTo
Real
sin
Set.Icc
instPreorder
instNeg
instOne
β€”sin_mem_Icc
monotoneOn_sin πŸ“–mathematicalβ€”MonotoneOn
Real
instPreorder
sin
Set.Icc
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”StrictMonoOn.monotoneOn
Nat.instAtLeastTwoHAddOfNat
strictMonoOn_sin
one_le_pi_div_two πŸ“–mathematicalβ€”Real
instLE
instOne
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
exists_cos_eq_zero
pi.eq_1
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
pi_div_two_le_two πŸ“–mathematicalβ€”Real
instLE
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
exists_cos_eq_zero
pi.eq_1
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
pi_div_two_pos πŸ“–mathematicalβ€”Real
instLT
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pi_pos
pi_le_four πŸ“–mathematicalβ€”Real
instLE
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
div_le_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
zero_lt_two
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
pi_div_two_le_two
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
pi_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
pi_pos
pi_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
pi
β€”LT.lt.le
pi_pos
pi_pos πŸ“–mathematicalβ€”Real
instLT
instZero
pi
β€”lt_of_lt_of_le
Nat.instAtLeastTwoHAddOfNat
instIsOrderedRing
instNontrivial
two_le_pi
quadratic_root_cos_pi_div_five πŸ“–mathematicalβ€”Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
instMonoid
cos
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOne
instZero
β€”Nat.instAtLeastTwoHAddOfNat
sin_eq_zero_iff
Nat.cast_one
Int.cast_ofNat
Int.cast_one
RCLike.charZero_rclike
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
pi_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
mul_assoc
mul_comm
sin_two_mul
sin_pi_sub
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_eq
instIsOrderedRing
sub_eq_zero_of_eq
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Ring.neg_congr
neg_eq_zero
sin_add
cos_two_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
mul_left_cancelβ‚€
IsDomain.toIsCancelMulZero
instIsDomain
sub_sub_cancel
sub_self
range_cos πŸ“–mathematicalβ€”Set.range
Real
cos
Set.Icc
instPreorder
instNeg
instOne
β€”Set.Subset.antisymm
Set.range_subset_iff
cos_mem_Icc
Set.SurjOn.subset_range
surjOn_cos
range_cos_infinite πŸ“–mathematicalβ€”Set.Infinite
Real
Set.range
cos
β€”range_cos
Set.Icc_infinite
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
range_sin πŸ“–mathematicalβ€”Set.range
Real
sin
Set.Icc
instPreorder
instNeg
instOne
β€”Set.Subset.antisymm
Set.range_subset_iff
sin_mem_Icc
Set.SurjOn.subset_range
Nat.instAtLeastTwoHAddOfNat
surjOn_sin
range_sin_infinite πŸ“–mathematicalβ€”Set.Infinite
Real
Set.range
sin
β€”range_sin
Set.Icc_infinite
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
sinOrderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Set.Elem
Real
Set.Icc
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
instLE
Set
Set.instMembership
instFunLikeOrderIso
sinOrderIso
sin
sin_mem_Icc
β€”Nat.instAtLeastTwoHAddOfNat
sin_add_int_mul_pi πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
instIntCast
pi
DivInvMonoid.toZPow
instDivInvMonoid
instNeg
instOne
β€”Function.Antiperiodic.add_int_mul_eq
sin_antiperiodic
Int.cast_negOnePow
sin_add_int_mul_two_pi πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.int_mul
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_add_nat_mul_pi πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
instNatCast
pi
Monoid.toNatPow
instMonoid
instNeg
instOne
β€”Function.Antiperiodic.add_nat_mul_eq
sin_antiperiodic
sin_add_nat_mul_two_pi πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.nat_mul
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_add_pi πŸ“–mathematicalβ€”sin
Real
instAdd
pi
instNeg
β€”sin_antiperiodic
sin_add_pi_div_two πŸ“–mathematicalβ€”sin
Real
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
sin_add
cos_pi_div_two
MulZeroClass.mul_zero
sin_pi_div_two
mul_one
zero_add
sin_add_two_pi πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”sin_periodic
sin_antiperiodic πŸ“–mathematicalβ€”Function.Antiperiodic
Real
instAdd
instNeg
sin
pi
β€”sin_add
cos_pi
mul_neg
mul_one
sin_pi
MulZeroClass.mul_zero
add_zero
sin_eq_sqrt_one_sub_cos_sq πŸ“–mathematicalReal
instLE
instZero
pi
sin
sqrt
instSub
instOne
Monoid.toNatPow
instMonoid
cos
β€”abs_sin_eq_sqrt_one_sub_cos_sq
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_nonneg_of_nonneg_of_le_pi
sin_eq_zero_iff πŸ“–mathematicalβ€”sin
Real
instZero
instMul
instIntCast
pi
β€”le_antisymm
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Int.sub_floor_div_mul_nonneg
instIsStrictOrderedRing
pi_pos
sub_nonpos
le_of_not_gt
LT.lt.ne
sin_pos_of_pos_of_lt_pi
Int.sub_floor_div_mul_lt
sub_eq_add_neg
sin_add
cos_neg
MulZeroClass.zero_mul
sin_neg
sin_int_mul_pi
neg_zero
MulZeroClass.mul_zero
add_zero
sin_eq_zero_iff_cos_eq πŸ“–mathematicalβ€”sin
Real
instZero
cos
instOne
instNeg
β€”mul_self_eq_one_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sin_sq_add_cos_sq
sq
right_eq_add
AddRightCancelSemigroup.toIsRightCancelAdd
mul_eq_zero
sin_eq_zero_iff_of_lt_of_lt πŸ“–mathematicalReal
instLT
instNeg
pi
sin
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
Ne.lt_or_gt
LT.lt.ne
sin_neg_of_neg_of_neg_pi_lt
LT.lt.ne'
sin_pos_of_pos_of_lt_pi
sin_zero
sin_half_eq_neg_sqrt πŸ“–mathematicalReal
instLE
instNeg
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instZero
sin
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
instOne
cos
β€”Nat.instAtLeastTwoHAddOfNat
abs_sin_half
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_nonpos_of_nonpos_of_neg_pi_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_gt
CancelDenoms.neg_subst
neg_neg
sin_half_eq_sqrt πŸ“–mathematicalReal
instLE
instZero
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
sin
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
instOne
cos
β€”Nat.instAtLeastTwoHAddOfNat
abs_sin_half
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_nonneg_of_nonneg_of_le_pi
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
sin_int_mul_pi πŸ“–mathematicalβ€”sin
Real
instMul
instIntCast
pi
instZero
β€”Function.Antiperiodic.int_mul_eq_of_eq_zero
sin_antiperiodic
sin_zero
sin_int_mul_pi_sub πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instIntCast
pi
instNeg
DivInvMonoid.toZPow
instDivInvMonoid
instOne
β€”Int.cast_negOnePow
sin_neg
mul_neg
Function.Antiperiodic.int_mul_sub_eq
sin_antiperiodic
sin_int_mul_two_pi_sub πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.int_mul_sub_eq
sin_periodic
sin_neg
sin_le_sin_of_le_of_le_pi_div_two πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sinβ€”Nat.instAtLeastTwoHAddOfNat
StrictMonoOn.le_iff_le
strictMonoOn_sin
LE.le.trans
sin_lt_sin_of_lt_of_le_pi_div_two πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instLT
sinβ€”Nat.instAtLeastTwoHAddOfNat
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_sub_sin
sin_pos_of_pos_of_lt_pi
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
CancelDenoms.neg_subst
cos_pos_of_mem_Ioo
CancelDenoms.add_subst
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
sin_mem_Icc πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
instPreorder
instNeg
instOne
sin
β€”neg_one_le_sin
sin_le_one
sin_nat_mul_pi πŸ“–mathematicalβ€”sin
Real
instMul
instNatCast
pi
instZero
β€”Function.Antiperiodic.nat_mul_eq_of_eq_zero
sin_antiperiodic
sin_zero
sin_nat_mul_pi_sub πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instNatCast
pi
instNeg
Monoid.toNatPow
instMonoid
instOne
β€”sin_neg
mul_neg
Function.Antiperiodic.nat_mul_sub_eq
sin_antiperiodic
sin_nat_mul_two_pi_sub πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.nat_mul_sub_eq
sin_periodic
sin_neg
sin_ne_zero_iff πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Mathlib.Tactic.Push.not_forall_eq
sin_eq_zero_iff
sin_neg_of_neg_of_neg_pi_lt πŸ“–mathematicalReal
instLT
instZero
instNeg
pi
sinβ€”neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_pos_of_pos_of_lt_pi
neg_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
sin_neg
sin_nonneg_of_mem_Icc πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
instPreorder
instZero
pi
instLE
sin
β€”closure_lt_subset_le
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
continuous_const
continuous_sin
closure_mono
sin_pos_of_mem_Ioo
closure_Ioo
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pi_ne_zero
sin_nonneg_of_nonneg_of_le_pi πŸ“–mathematicalReal
instLE
instZero
pi
sinβ€”sin_nonneg_of_mem_Icc
sin_nonpos_of_nonpos_of_neg_pi_le πŸ“–mathematicalReal
instLE
instZero
instNeg
pi
sinβ€”neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_nonneg_of_nonneg_of_le_pi
neg_le
covariant_swap_add_of_covariant_add
sin_neg
sin_periodic πŸ“–mathematicalβ€”Function.Periodic
Real
instAdd
sin
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Antiperiodic.periodic_two_mul
sin_antiperiodic
sin_pi πŸ“–mathematicalβ€”sin
pi
Real
instZero
β€”Nat.instAtLeastTwoHAddOfNat
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
two_mul
add_div
sin_add
cos_pi_div_two
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
sin_pi_div_eight πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instSub
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit1
sin_pi_over_two_pow_succ
add_zero
sin_pi_div_four πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
sin_pi_over_two_pow_succ
sub_zero
sin_pi_div_six πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_pi_div_two_sub
cos_pi_div_three
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
sin_pi_div_sixteen πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instSub
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
sin_pi_over_two_pow_succ
add_zero
sin_pi_div_thirty_two πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instSub
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNatPowT.bit1
sin_pi_over_two_pow_succ
add_zero
sin_pi_div_three πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
cos_pi_div_two_sub
cos_pi_div_six
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
sin_pi_div_two πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
sq
cos_pi_div_two
MulZeroClass.mul_zero
add_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sin_sq_add_cos_sq
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
sin_pos_of_pos_of_lt_pi
pi_div_two_pos
half_lt_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pi_pos
sin_pi_div_two_sub πŸ“–mathematicalβ€”sin
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
sin_add
sin_pi_div_two
cos_neg
one_mul
cos_pi_div_two
sin_neg
mul_neg
MulZeroClass.zero_mul
neg_zero
add_zero
sin_pi_over_two_pow_succ πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
instSub
sqrtTwoAddSeries
instZero
β€”Nat.instAtLeastTwoHAddOfNat
eq_div_iff_mul_eq
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
sqrt_eq_iff_eq_sq
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.le
sqrtTwoAddSeries_lt_two
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
sin_nonneg_of_nonneg_of_le_pi
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pi_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_le_self
one_le_powβ‚€
instZeroLEOneClass
one_le_two
zero_le_two
mul_pow
sin_sq_pi_over_two_pow_succ
sub_mul
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNat.to_eq
IsUnit.div_mul_cancel
Mathlib.Meta.NormNum.isNat_eq_false
Nat.cast_zero
sin_pi_sub πŸ“–mathematicalβ€”sin
Real
instSub
pi
β€”Function.Antiperiodic.sub_eq'
sin_antiperiodic
sin_neg
neg_neg
sin_pos_of_mem_Ioo πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
pi
instLT
sin
β€”sin_pos_of_pos_of_lt_pi
sin_pos_of_pos_of_lt_pi πŸ“–mathematicalReal
instLT
instZero
pi
sinβ€”Nat.instAtLeastTwoHAddOfNat
sin_pos_of_pos_of_le_two
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
lt_of_not_ge
Mathlib.Tactic.Linarith.sub_nonpos_of_le
pi_le_four
sin_pi_sub
sin_sq_pi_over_two_pow πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sin
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
instOne
sqrtTwoAddSeries
instZero
β€”Nat.instAtLeastTwoHAddOfNat
sin_sq
cos_pi_over_two_pow
sin_sq_pi_over_two_pow_succ πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sin
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
instOne
sqrtTwoAddSeries
instZero
β€”Nat.instAtLeastTwoHAddOfNat
sin_sq_pi_over_two_pow
sqrtTwoAddSeries.eq_2
div_pow
sq_sqrt
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.le
two_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
sqrtTwoAddSeries_zero_nonneg
add_div
sub_sub
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.isNat_eq_true
sin_sub_int_mul_pi πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instIntCast
pi
DivInvMonoid.toZPow
instDivInvMonoid
instNeg
instOne
β€”Function.Antiperiodic.sub_int_mul_eq
sin_antiperiodic
Int.cast_negOnePow
sin_sub_int_mul_two_pi πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.sub_int_mul_eq
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_sub_nat_mul_pi πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instNatCast
pi
Monoid.toNatPow
instMonoid
instNeg
instOne
β€”Function.Antiperiodic.sub_nat_mul_eq
sin_antiperiodic
sin_sub_nat_mul_two_pi πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.sub_nat_mul_eq
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_sub_pi πŸ“–mathematicalβ€”sin
Real
instSub
pi
instNeg
β€”Function.Antiperiodic.sub_eq
sin_antiperiodic
sin_sub_pi_div_two πŸ“–mathematicalβ€”sin
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instNeg
cos
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
sin_add
cos_neg
cos_pi_div_two
MulZeroClass.mul_zero
sin_neg
sin_pi_div_two
mul_neg
mul_one
zero_add
sin_sub_two_pi πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Function.Periodic.sub_eq
Nat.instAtLeastTwoHAddOfNat
sin_periodic
sin_two_pi πŸ“–mathematicalβ€”sin
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instZero
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
sin_add
sin_pi
cos_pi
mul_neg
mul_one
neg_zero
MulZeroClass.mul_zero
add_zero
sin_two_pi_sub πŸ“–mathematicalβ€”sin
Real
instSub
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.sub_eq'
sin_periodic
sin_neg
sq_cos_pi_div_six πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
cos
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
cos_pi_div_six
div_pow
sq_sqrt
Mathlib.Meta.NormNum.isNat_le_true
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
sq_sin_pi_div_three πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sin
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
cos_pi_div_two_sub
sq_cos_pi_div_six
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
sqrtTwoAddSeries_lt_two πŸ“–mathematicalβ€”Real
instLT
sqrtTwoAddSeries
instZero
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
instIsOrderedRing
instNontrivial
lt_of_lt_of_le
sqrtTwoAddSeries.eq_2
sqrt_lt_sqrt_iff
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
zero_le_two
instZeroLEOneClass
sqrtTwoAddSeries_zero_nonneg
lt_sub_iff_add_lt'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
LT.lt.trans_le
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Eq.le
sqrt_sq
LT.lt.le
zero_lt_two
NeZero.charZero_one
RCLike.charZero_rclike
sqrtTwoAddSeries_monotone_left πŸ“–mathematicalReal
instLE
sqrtTwoAddSeriesβ€”sqrtTwoAddSeries.eq_2
sqrt_monotone
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrtTwoAddSeries_nonneg πŸ“–mathematicalReal
instLE
instZero
sqrtTwoAddSeriesβ€”sqrt_nonneg
sqrtTwoAddSeries_one πŸ“–mathematicalβ€”sqrtTwoAddSeries
Real
instZero
sqrt
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
add_zero
sqrtTwoAddSeries_succ πŸ“–mathematicalβ€”sqrtTwoAddSeries
sqrt
Real
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sqrtTwoAddSeries.eq_2
sqrtTwoAddSeries_two πŸ“–mathematicalβ€”sqrtTwoAddSeries
Real
instZero
sqrt
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
add_zero
sqrtTwoAddSeries_zero πŸ“–mathematicalβ€”sqrtTwoAddSeriesβ€”β€”
sqrtTwoAddSeries_zero_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
sqrtTwoAddSeries
β€”le_refl
sqrt_nonneg
strictAntiOn_cos πŸ“–mathematicalβ€”StrictAntiOn
Real
instPreorder
cos
Set.Icc
instZero
pi
β€”cos_lt_cos_of_nonneg_of_le_pi
strictMonoOn_sin πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
sin
Set.Icc
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sin_lt_sin_of_lt_of_le_pi_div_two
strictMonoOn_tan πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
tan
Set.Ioo
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
div_lt_div_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
cos_pos_of_mem_Ioo
mul_comm
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sin_sub
sin_pos_of_pos_of_lt_pi
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.mul_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.neg_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
surjOn_cos πŸ“–mathematicalβ€”Set.SurjOn
Real
cos
Set.Icc
instPreorder
instZero
pi
instNeg
instOne
β€”cos_pi
cos_zero
intermediate_value_Icc'
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
LT.lt.le
pi_pos
Continuous.continuousOn
continuous_cos
surjOn_sin πŸ“–mathematicalβ€”Set.SurjOn
Real
sin
Set.Icc
instPreorder
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
sin_neg
sin_pi_div_two
intermediate_value_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
neg_le_self
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
pi_div_two_pos
Continuous.continuousOn
continuous_sin
tan_add_int_mul_pi πŸ“–mathematicalβ€”tan
Real
instAdd
instMul
instIntCast
pi
β€”Function.Periodic.int_mul
tan_periodic
tan_add_nat_mul_pi πŸ“–mathematicalβ€”tan
Real
instAdd
instMul
instNatCast
pi
β€”Function.Periodic.nat_mul
tan_periodic
tan_add_pi πŸ“–mathematicalβ€”tan
Real
instAdd
pi
β€”tan_periodic
tan_inj_of_lt_of_lt_pi_div_two πŸ“–β€”Real
instLT
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tan
β€”β€”Nat.instAtLeastTwoHAddOfNat
injOn_tan
tan_int_mul_pi πŸ“–mathematicalβ€”tan
Real
instMul
instIntCast
pi
instZero
β€”Function.Periodic.int_mul_eq
tan_periodic
tan_zero
tan_int_mul_pi_sub πŸ“–mathematicalβ€”tan
Real
instSub
instMul
instIntCast
pi
instNeg
β€”Function.Periodic.int_mul_sub_eq
tan_periodic
tan_neg
tan_lt_tan_of_lt_of_lt_pi_div_two πŸ“–mathematicalReal
instLT
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
strictMonoOn_tan
LT.lt.trans
tan_lt_tan_of_nonneg_of_lt_pi_div_two πŸ“–mathematicalReal
instLE
instZero
instLT
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
tan_lt_tan_of_lt_of_lt_pi_div_two
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.mul_nonpos
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
CancelDenoms.neg_subst
tan_nat_mul_pi πŸ“–mathematicalβ€”tan
Real
instMul
instNatCast
pi
instZero
β€”Function.Periodic.nat_mul_eq
tan_periodic
tan_zero
tan_nat_mul_pi_sub πŸ“–mathematicalβ€”tan
Real
instSub
instMul
instNatCast
pi
instNeg
β€”Function.Periodic.nat_mul_sub_eq
tan_periodic
tan_neg
tan_neg_of_neg_of_pi_div_two_lt πŸ“–mathematicalReal
instLT
instZero
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
tan_pos_of_pos_of_lt_pi_div_two
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
CancelDenoms.sub_subst
CancelDenoms.neg_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
tan_neg
tan_nonneg_of_nonneg_of_le_pi_div_two πŸ“–mathematicalReal
instLE
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
lt_or_eq_of_le
le_of_lt
tan_pos_of_pos_of_lt_pi_div_two
tan_eq_sin_div_cos
sin_pi_div_two
cos_pi_div_two
div_zero
tan_zero
tan_nonpos_of_nonpos_of_neg_pi_div_two_le πŸ“–mathematicalReal
instLE
instZero
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
tan_nonneg_of_nonneg_of_le_pi_div_two
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
CancelDenoms.sub_subst
CancelDenoms.neg_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
tan_neg
tan_periodic πŸ“–mathematicalβ€”Function.Periodic
Real
instAdd
tan
pi
β€”tan_eq_sin_div_cos
Function.Antiperiodic.div
sin_antiperiodic
cos_antiperiodic
tan_pi πŸ“–mathematicalβ€”tan
pi
Real
instZero
β€”Function.Periodic.eq
tan_periodic
tan_zero
tan_pi_div_four πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
cos_pi_div_four
sin_pi_div_four
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sqrt_pos_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_self
ne_of_gt
tan_pi_div_six πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
sin_pi_div_six
cos_pi_div_six
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.isNNRat_mul
tan_pi_div_three πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
sin_pi_div_three
cos_pi_div_three
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.isNNRat_mul
tan_pi_div_two πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
sin_pi_div_two
cos_pi_div_two
div_zero
tan_pi_div_two_sub πŸ“–mathematicalβ€”tan
Real
instSub
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instInv
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
inv_div
sin_pi_div_two_sub
cos_pi_div_two_sub
tan_pi_sub πŸ“–mathematicalβ€”tan
Real
instSub
pi
instNeg
β€”Function.Periodic.sub_eq'
tan_periodic
tan_neg
tan_pos_of_pos_of_lt_pi_div_two πŸ“–mathematicalReal
instLT
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
tan_eq_sin_div_cos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sin_pos_of_pos_of_lt_pi
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_nonpos_of_le
cos_pos_of_mem_Ioo
Mathlib.Tactic.Ring.neg_congr
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
tan_sub_int_mul_pi πŸ“–mathematicalβ€”tan
Real
instSub
instMul
instIntCast
pi
β€”Function.Periodic.sub_int_mul_eq
tan_periodic
tan_sub_nat_mul_pi πŸ“–mathematicalβ€”tan
Real
instSub
instMul
instNatCast
pi
β€”Function.Periodic.sub_nat_mul_eq
tan_periodic
tan_sub_pi πŸ“–mathematicalβ€”tan
Real
instSub
pi
β€”Function.Periodic.sub_eq
tan_periodic
tendsto_cos_neg_pi_div_two πŸ“–mathematicalβ€”Filter.Tendsto
Real
cos
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Ioi
instPreorder
instZero
β€”tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
Nat.instAtLeastTwoHAddOfNat
cos_neg
cos_pi_div_two
ContinuousWithinAt.tendsto
Continuous.continuousWithinAt
continuous_cos
Filter.mp_mem
Ioo_mem_nhdsGT
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
neg_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
pi_div_two_pos
Filter.univ_mem'
cos_pos_of_mem_Ioo
tendsto_cos_pi_div_two πŸ“–mathematicalβ€”Filter.Tendsto
Real
cos
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Iio
instPreorder
instZero
Set.Ioi
β€”tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
Nat.instAtLeastTwoHAddOfNat
cos_pi_div_two
ContinuousWithinAt.tendsto
Continuous.continuousWithinAt
continuous_cos
Filter.mp_mem
Ioo_mem_nhdsLT
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
neg_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
pi_div_two_pos
Filter.univ_mem'
cos_pos_of_mem_Ioo
tendsto_sin_neg_pi_div_two πŸ“–mathematicalβ€”Filter.Tendsto
Real
sin
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Ioi
instPreorder
nhds
instOne
β€”Nat.instAtLeastTwoHAddOfNat
sin_neg
sin_pi_div_two
ContinuousWithinAt.tendsto
Continuous.continuousWithinAt
continuous_sin
tendsto_sin_pi_div_two πŸ“–mathematicalβ€”Filter.Tendsto
Real
sin
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Iio
instPreorder
nhds
instOne
β€”Nat.instAtLeastTwoHAddOfNat
sin_pi_div_two
ContinuousWithinAt.tendsto
Continuous.continuousWithinAt
continuous_sin
tendsto_tan_neg_pi_div_two πŸ“–mathematicalβ€”Filter.Tendsto
Real
tan
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Ioi
instPreorder
Filter.atBot
β€”Nat.instAtLeastTwoHAddOfNat
Filter.Tendsto.atTop_mul_neg
instIsStrictOrderedRing
instOrderTopologyReal
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Filter.Tendsto.inv_tendsto_nhdsGT_zero
tendsto_cos_neg_pi_div_two
tendsto_sin_neg_pi_div_two
tendsto_tan_pi_div_two πŸ“–mathematicalβ€”Filter.Tendsto
Real
tan
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Iio
instPreorder
Filter.atTop
β€”Nat.instAtLeastTwoHAddOfNat
Filter.Tendsto.atTop_mul_pos
instIsStrictOrderedRing
instOrderTopologyReal
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Filter.Tendsto.inv_tendsto_nhdsGT_zero
tendsto_cos_pi_div_two
tendsto_sin_pi_div_two
two_le_pi πŸ“–mathematicalβ€”Real
instLE
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”Nat.instAtLeastTwoHAddOfNat
div_le_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
zero_lt_two
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
div_self
two_ne_zero
CharZero.NeZero.two
one_le_pi_div_two
two_pi_pos πŸ“–mathematicalβ€”Real
instLT
instZero
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
β€”lt_of_not_ge
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
pi_pos
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike

Real.Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
isRoot_cos_pi_div_five πŸ“–mathematicalβ€”Polynomial.IsRoot
Real
Real.semiring
Polynomial
Polynomial.instSub
Real.instRing
Polynomial.instNSMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Real.instOne
Real.cos
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
nsmul_eq_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.eval_sub
Polynomial.eval_mul
Polynomial.eval_ofNat
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_one
Real.quadratic_root_cos_pi_div_five

---

← Back to Index