Documentation Verification Report

Bounds

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Bounds.lean

Statistics

MetricCount
Definitions0
Theoremsabs_cos_sub_cos_le, abs_sin_le_abs, abs_sin_lt_abs, abs_sin_sub_sin_le, cos_le_one_div_sqrt_sq_add_one, cos_le_one_sub_mul_cos_sq, cos_lt_one_div_sqrt_sq_add_one, deriv_tan_sub_id, enorm_exp_I_mul_ofReal_sub_one_le, le_sin, le_sin_mul, le_tan, lipschitzWith_cos, lipschitzWith_sin, lt_sin, lt_sin_mul, lt_tan, mul_abs_le_abs_sin, mul_le_sin, mul_lt_sin, nnnorm_exp_I_mul_ofReal_sub_one_le, norm_exp_I_mul_ofReal_sub_one_le, one_add_mul_le_cos, one_sub_mul_le_cos, one_sub_sq_div_two_le_cos, one_sub_sq_div_two_lt_cos, sin_gt_sub_cube, sin_le, sin_le_mul, sin_lt, sin_sq_le_sq, sin_sq_lt_sq
32
Total32

Real

Theorems

NameKindAssumesProvesValidatesDepends On
abs_cos_sub_cos_le πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
instSub
cos
β€”edist_dist
one_mul
lipschitzWith_cos
abs_sin_le_abs πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
sin
β€”sq_le_sq
instIsStrictOrderedRing
sin_sq_le_sq
abs_sin_lt_abs πŸ“–mathematicalβ€”Real
instLT
abs
lattice
instAddGroup
sin
β€”sq_lt_sq
instIsStrictOrderedRing
sin_sq_lt_sq
abs_sin_sub_sin_le πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
instSub
sin
β€”edist_dist
one_mul
lipschitzWith_sin
cos_le_one_div_sqrt_sq_add_one πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
cos
instOne
sqrt
instAdd
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
cos_zero
zero_pow
Nat.instCharZero
zero_add
sqrt_one
div_self
NeZero.charZero_one
RCLike.charZero_rclike
LT.lt.le
cos_lt_one_div_sqrt_sq_add_one
cos_le_one_sub_mul_cos_sq πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
pi
cos
instSub
instOne
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
div_mul_div_cancelβ‚€'
RCLike.charZero_rclike
mul_le_sin
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
LE.le.trans_eq
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
pi_pos
sin_sq_eq_half_sub
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.neg_congr
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.IsRat.neg_to_eq
Mathlib.Meta.NormNum.isRat_div
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isRat_neg
CancelDenoms.mul_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
CancelDenoms.add_subst
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
mul_one
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
pow_one
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.Linarith.without_one_mul
cos_neg
Even.neg_pow
abs_neg
neg_nonneg
le_of_not_ge
cos_lt_one_div_sqrt_sq_add_one πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
pi
instLT
cos
instOne
sqrt
instAdd
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsOrderedAddMonoid.toAddLeftMono
lt_or_ge
cos_pos_of_mem_Ioo
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_nonpos
abs_of_nonneg
cos_nonneg_of_mem_Icc
le_of_not_gt
LT.lt.le
one_div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sqrt_nonneg
sq_lt_sq
div_pow
one_pow
sq_sqrt
lt_one_div
pow_pos
instZeroLEOneClass
inv_one_add_tan_sq
LT.lt.ne'
one_div
inv_inv
add_comm
add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
abs_of_pos
tan_nonneg_of_nonneg_of_le_pi_div_two
lt_tan
lt_of_le_of_lt
cos_nonpos_of_pi_div_two_le_of_le
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
CancelDenoms.mul_subst
CancelDenoms.add_subst
one_div_pos
sqrt_pos_of_pos
lt_or_lt_iff_ne
cos_neg
neg_sq
deriv_tan_sub_id πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instSub
tan
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
cos
β€”HasDerivAt.deriv
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.congr_simp
one_div
HasDerivAt.add
hasDerivAt_tan
HasDerivAt.neg
hasDerivAt_id
enorm_exp_I_mul_ofReal_sub_one_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENorm.enorm
Complex
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SeminormedAddGroup.toContinuousENorm
Complex.instSub
Complex.exp
Complex.instMul
Complex.I
Complex.ofReal
Complex.instOne
Real
normedCommRing
β€”enorm_norm
enorm_of_nonneg
norm_nonneg
ENNReal.ofReal_le_ofReal
norm_exp_I_mul_ofReal_sub_one_le
le_sin πŸ“–mathematicalReal
instLE
instZero
sinβ€”sin_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
sin_le
neg_nonneg
le_sin_mul πŸ“–mathematicalReal
instLE
instZero
instOne
sin
instMul
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_add_cancel
sin_zero
MulZeroClass.mul_zero
sin_pi_div_two
mul_comm
one_mul
zero_add
StrictConcaveOn.concaveOn
strictConcaveOn_sin_Icc
le_rfl
LT.lt.le
pi_pos
pi_div_two_pos
half_le_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_tan πŸ“–mathematicalReal
instLE
instZero
instLT
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
eq_or_lt_of_le
tan_zero
le_refl
le_of_lt
lt_tan
lipschitzWith_cos πŸ“–mathematicalβ€”LipschitzWith
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
NNReal
instOneNNReal
cos
β€”lipschitzWith_of_nnnorm_deriv_le
differentiable_cos
deriv_cos'
nnnorm_neg
abs_sin_le_one
lipschitzWith_sin πŸ“–mathematicalβ€”LipschitzWith
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
NNReal
instOneNNReal
sin
β€”lipschitzWith_of_nnnorm_deriv_le
differentiable_sin
deriv_sin
abs_cos_le_one
lt_sin πŸ“–mathematicalReal
instLT
instZero
sinβ€”sin_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
sin_lt
neg_pos
lt_sin_mul πŸ“–mathematicalReal
instLT
instZero
instOne
sin
instMul
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_add_cancel
sin_zero
MulZeroClass.mul_zero
sin_pi_div_two
mul_comm
one_mul
zero_add
strictConcaveOn_sin_Icc
le_rfl
LT.lt.le
pi_pos
pi_div_two_pos
half_le_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
LT.lt.ne
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_tan πŸ“–mathematicalReal
instLT
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tanβ€”Nat.instAtLeastTwoHAddOfNat
interior_Ico
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instNoMinOrderOfNontrivial
instIsOrderedRing
instNontrivial
div_pos
pi_pos
two_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cos_pos_of_mem_Ioo
Set.Ico_subset_Ioo_left
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sin_pos_of_mem_Ioo
Set.Ioo_subset_Ioo_right
div_le_self
LT.lt.le
one_le_two
ContinuousOn.mono
continuousOn_tan
LT.lt.ne'
ContinuousOn.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuousOn_id
interior_subset
deriv_tan_sub_id
one_div
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Nat.cast_one
lt_of_le_of_ne
cos_sq_le_one
cos_sq'
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
lt_inv_commβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zero_lt_one
sq
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
inv_one
strictMonoOn_of_deriv_pos
convex_Ico
instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Set.left_mem_Ico
tan_zero
sub_zero
mul_abs_le_abs_sin πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
sin
β€”Nat.instAtLeastTwoHAddOfNat
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LE.le.trans
mul_le_sin
le_abs_self
abs_neg
sin_neg
neg_nonneg
le_of_not_ge
mul_le_sin πŸ“–mathematicalReal
instLE
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
sin
β€”Nat.instAtLeastTwoHAddOfNat
inv_div
mul_inv_cancel_leftβ‚€
RCLike.charZero_rclike
le_sin_mul
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
LT.lt.le
pi_div_two_pos
div_eq_inv_mul
div_le_one
mul_lt_sin πŸ“–mathematicalReal
instLT
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
sin
β€”Nat.instAtLeastTwoHAddOfNat
inv_div
mul_inv_cancel_leftβ‚€
RCLike.charZero_rclike
lt_sin_mul
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
pi_div_two_pos
div_eq_inv_mul
div_lt_one
nnnorm_exp_I_mul_ofReal_sub_one_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instSub
Complex.exp
Complex.instMul
Complex.I
Complex.ofReal
Complex.instOne
Real
normedCommRing
β€”ENNReal.coe_le_coe
enorm_exp_I_mul_ofReal_sub_one_le
norm_exp_I_mul_ofReal_sub_one_le πŸ“–mathematicalβ€”Real
instLE
Norm.norm
Complex
Complex.instNorm
Complex.instSub
Complex.exp
Complex.instMul
Complex.I
Complex.ofReal
Complex.instOne
norm
β€”Nat.instAtLeastTwoHAddOfNat
Complex.norm_exp_I_mul_ofReal_sub_one
norm_mul
NormedDivisionRing.toNormMulClass
norm_ofNat
mul_le_mul_iff_of_pos_left
IsOrderedRing.toPosMulMono
instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
zero_lt_two
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
abs_sin_le_abs
abs_div
Nat.abs_ofNat
norm_eq_abs
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
one_add_mul_le_cos πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
instAdd
instOne
instMul
cos
β€”Nat.instAtLeastTwoHAddOfNat
mul_neg
sub_neg_eq_add
cos_neg
one_sub_mul_le_cos
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
CancelDenoms.sub_subst
CancelDenoms.neg_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
one_sub_mul_le_cos πŸ“–mathematicalReal
instLE
instZero
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
instOne
instMul
cos
β€”Nat.instAtLeastTwoHAddOfNat
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_sub
div_mul_div_cancelβ‚€'
RCLike.charZero_rclike
div_self
LT.lt.ne'
pi_pos
sin_pi_div_two_sub
mul_le_sin
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
one_sub_sq_div_two_le_cos πŸ“–mathematicalβ€”Real
instLE
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
zero_pow
Nat.instCharZero
zero_div
sub_zero
cos_zero
LT.lt.le
one_sub_sq_div_two_lt_cos
one_sub_sq_div_two_lt_cos πŸ“–mathematicalβ€”Real
instLT
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
LT.lt.trans_eq'
sin_sq_lt_sq
Mathlib.Meta.Positivity.div_ne_zero_of_ne_zero_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
sin_sq_eq_half_sub
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsRat.neg_to_eq
Mathlib.Meta.NormNum.isRat_div
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isRat_neg
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.mul_subst
CancelDenoms.neg_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
sin_gt_sub_cube πŸ“–mathematicalReal
instLT
instZero
instLE
instOne
instSub
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
β€”abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.le
Nat.instAtLeastTwoHAddOfNat
neg_le_of_abs_le
sin_bound
lt_of_lt_of_le
Mathlib.Meta.NormNum.instAtLeastTwo
div_eq_mul_inv
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
add_comm
sub_add
sub_neg_eq_add
sub_lt_sub_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_sub_iff_add_lt'
mul_lt_mul'
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
instIsOrderedRing
pow_le_pow_of_le_one
IsOrderedRing.toPosMulMono
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isRat_le_true
Nat.cast_zero
pow_pos
instZeroLEOneClass
le_sub_iff_add_le
sin_le πŸ“–mathematicalReal
instLE
instZero
sinβ€”LE.le.eq_or_lt
sin_zero
LT.lt.le
sin_lt
sin_le_mul πŸ“–mathematicalReal
instLE
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
sin
instMul
β€”Nat.instAtLeastTwoHAddOfNat
mul_neg
sin_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_le_sin
neg_nonneg
neg_le
sin_lt πŸ“–mathematicalReal
instLT
instZero
sinβ€”lt_or_ge
LE.le.trans_lt
sin_le_one
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.le
Nat.instAtLeastTwoHAddOfNat
le_of_abs_le
sin_bound
sub_le_iff_le_add'
sub_add
sub_lt_self_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
div_eq_mul_inv
mul_lt_mul'
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
instIsOrderedRing
pow_le_pow_of_le_one
IsOrderedRing.toPosMulMono
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Nat.cast_zero
pow_pos
instZeroLEOneClass
sin_sq_le_sq πŸ“–mathematicalβ€”Real
instLE
Monoid.toNatPow
instMonoid
sin
β€”eq_or_ne
sin_zero
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
LT.lt.le
sin_sq_lt_sq
sin_sq_lt_sq πŸ“–mathematicalβ€”Real
instLT
Monoid.toNatPow
instMonoid
sin
β€”le_or_gt
pow_lt_pow_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
instIsOrderedRing
sin_lt
sin_nonneg_of_nonneg_of_le_pi
LT.lt.le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
two_le_pi
Nat.instCharZero
LE.le.trans_lt
sin_sq_le_one
one_lt_sq_iffβ‚€
instZeroLEOneClass
sin_neg
Even.neg_pow
neg_ne_zero
neg_pos_of_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Ne.lt_of_le

---

← Back to Index