Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsC_two_mul_complex_cos, C_two_mul_complex_cosh, C_two_mul_real_cos, C_two_mul_real_cosh, S_two_mul_complex_cos, S_two_mul_complex_cosh, S_two_mul_real_cos, S_two_mul_real_cosh, T_complex_cos, T_complex_cosh, T_real_cos, T_real_cosh, U_complex_cos, U_complex_cosh, U_real_cos, U_real_cosh, complex_ofReal_eval_C, complex_ofReal_eval_S, complex_ofReal_eval_T, complex_ofReal_eval_U
20
Total20

Polynomial.Chebyshev

Theorems

NameKindAssumesProvesValidatesDepends On
C_two_mul_complex_cos πŸ“–mathematicalβ€”Polynomial.eval
Complex
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.cos
C
Complex.instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
Complex.instCharZero
C_eq_two_mul_T_comp_half_mul_X
invOf_eq_inv
Polynomial.eval_mul
Polynomial.eval_ofNat
Polynomial.eval_comp
Polynomial.eval_C
Polynomial.eval_X
inv_mul_cancel_leftβ‚€
T_complex_cos
C_two_mul_complex_cosh πŸ“–mathematicalβ€”Polynomial.eval
Complex
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.cosh
C
Complex.instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
Complex.instCharZero
C_eq_two_mul_T_comp_half_mul_X
invOf_eq_inv
Polynomial.eval_mul
Polynomial.eval_ofNat
Polynomial.eval_comp
Polynomial.eval_C
Polynomial.eval_X
inv_mul_cancel_leftβ‚€
T_complex_cosh
C_two_mul_real_cos πŸ“–mathematicalβ€”Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.cos
C
Real.instIntCast
β€”C_two_mul_complex_cos
C_two_mul_real_cosh πŸ“–mathematicalβ€”Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.cosh
C
Real.instIntCast
β€”C_two_mul_complex_cosh
S_two_mul_complex_cos πŸ“–mathematicalβ€”Complex
Complex.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.cos
S
Complex.sin
Complex.instAdd
Complex.instIntCast
Complex.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Complex.instCharZero
S_eq_U_comp_half_mul_X
invOf_eq_inv
Polynomial.eval_comp
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_X
inv_mul_cancel_leftβ‚€
U_complex_cos
S_two_mul_complex_cosh πŸ“–mathematicalβ€”Complex
Complex.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.cosh
S
Complex.sinh
Complex.instAdd
Complex.instIntCast
Complex.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Complex.instCharZero
S_eq_U_comp_half_mul_X
invOf_eq_inv
Polynomial.eval_comp
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_X
inv_mul_cancel_leftβ‚€
U_complex_cosh
S_two_mul_real_cos πŸ“–mathematicalβ€”Real
Real.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.cos
S
Real.sin
Real.instAdd
Real.instIntCast
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Int.cast_one
Int.cast_add
Complex.ofReal_add
S_two_mul_complex_cos
S_two_mul_real_cosh πŸ“–mathematicalβ€”Real
Real.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.cosh
S
Real.sinh
Real.instAdd
Real.instIntCast
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Int.cast_one
Int.cast_add
Complex.ofReal_add
S_two_mul_complex_cosh
T_complex_cos πŸ“–mathematicalβ€”Polynomial.eval
Complex
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
Complex.cos
T
Complex.instMul
Complex.instIntCast
β€”induct
T_zero
Polynomial.eval_one
Int.cast_zero
MulZeroClass.zero_mul
Complex.cos_zero
T_one
Polynomial.eval_X
Int.cast_one
one_mul
Nat.instAtLeastTwoHAddOfNat
T_add_two
Polynomial.eval_sub
Polynomial.eval_mul
Polynomial.eval_ofNat
Complex.cos_add_cos
Int.cast_add
Int.cast_natCast
Int.cast_ofNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
T_sub_one
Int.cast_neg
Int.cast_sub
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
T_complex_cosh πŸ“–mathematicalβ€”Polynomial.eval
Complex
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
Complex.cosh
T
Complex.instMul
Complex.instIntCast
β€”Complex.cos_mul_I
T_complex_cos
mul_assoc
T_real_cos πŸ“–mathematicalβ€”Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.cos
T
Real.instMul
Real.instIntCast
β€”T_complex_cos
T_real_cosh πŸ“–mathematicalβ€”Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.cosh
T
Real.instMul
Real.instIntCast
β€”T_complex_cosh
U_complex_cos πŸ“–mathematicalβ€”Complex
Complex.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
Complex.cos
U
Complex.sin
Complex.instAdd
Complex.instIntCast
Complex.instOne
β€”induct
U_zero
Polynomial.eval_one
one_mul
Int.cast_zero
zero_add
Nat.instAtLeastTwoHAddOfNat
U_one
Polynomial.eval_mul
Polynomial.eval_ofNat
Polynomial.eval_X
Int.cast_one
one_add_one_eq_two
Complex.sin_two_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
U_add_two
mul_assoc
Polynomial.eval_sub
sub_mul
Complex.sin_add_sin
Int.cast_add
Int.cast_natCast
Int.cast_ofNat
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
U_sub_one
Int.cast_neg
Int.cast_sub
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
U_complex_cosh πŸ“–mathematicalβ€”Complex
Complex.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.commRing
Complex.cosh
U
Complex.sinh
Complex.instAdd
Complex.instIntCast
Complex.instOne
β€”Complex.cos_mul_I
Complex.sin_mul_I
mul_neg
mul_assoc
Complex.I_mul_I
mul_one
neg_neg
U_complex_cos
U_real_cos πŸ“–mathematicalβ€”Real
Real.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.cos
U
Real.sin
Real.instAdd
Real.instIntCast
Real.instOne
β€”Nat.cast_one
Int.cast_one
Int.cast_add
Complex.ofReal_add
U_complex_cos
U_real_cosh πŸ“–mathematicalβ€”Real
Real.instMul
Polynomial.eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.cosh
U
Real.sinh
Real.instAdd
Real.instIntCast
Real.instOne
β€”Nat.cast_one
Int.cast_one
Int.cast_add
Complex.ofReal_add
U_complex_cosh
complex_ofReal_eval_C πŸ“–mathematicalβ€”Complex.ofReal
Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
C
Complex
Complex.commRing
β€”algebraMap_eval_C
complex_ofReal_eval_S πŸ“–mathematicalβ€”Complex.ofReal
Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
S
Complex
Complex.commRing
β€”algebraMap_eval_S
complex_ofReal_eval_T πŸ“–mathematicalβ€”Complex.ofReal
Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
T
Complex
Complex.commRing
β€”algebraMap_eval_T
complex_ofReal_eval_U πŸ“–mathematicalβ€”Complex.ofReal
Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
U
Complex
Complex.commRing
β€”algebraMap_eval_U

---

← Back to Index