Documentation Verification Report

Extremal

📁 Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev/Extremal.lean

Statistics

MetricCount
Definitionsnode, sumNodes
2
Theoremscoeff_eq_iff_of_forall_abs_le_one, coeff_le_of_forall_abs_le_one, eval_T_real_node, leadingCoeff_eq_iff_of_forall_abs_le_one, leadingCoeff_le_of_forall_abs_le_one, node_eq_neg_one, node_eq_one, node_lt, node_mem_Icc, strictAntiOn_node, sumNodes_eq_sumNodes_T_iff, sumNodes_le_sumNodes_T, zero_lt_prod_node_sub_node
13
Total15

Polynomial.Chebyshev

Definitions

NameCategoryTheorems
node 📖CompOp
7 mathmath: zero_lt_prod_node_sub_node, eval_T_real_node, strictAntiOn_node, node_eq_neg_one, node_mem_Icc, node_lt, node_eq_one
sumNodes 📖CompOp
2 mathmath: sumNodes_le_sumNodes_T, sumNodes_eq_sumNodes_T_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_eq_iff_of_forall_abs_le_one 📖mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
Real
Real.semiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Real.instLE
abs
Real.lattice
Real.instAddGroup
Polynomial.eval
Real.instOne
Polynomial.coeff
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
T
Real.commRing
Nat.instAtLeastTwoHAddOfNat
sumNodes_eq_sumNodes_T_iff
coeff_le_of_forall_abs_le_one 📖mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
Real
Real.semiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Real.instLE
abs
Real.lattice
Real.instAddGroup
Polynomial.eval
Real.instOne
Polynomial.coeff
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
sumNodes_le_sumNodes_T
le_of_lt
eval_T_real_node 📖mathematicalFinset
Finset.instMembership
Finset.Iic
Nat.instPreorder
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
Polynomial.eval
Real
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
node
T
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
eq_or_ne
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
T_zero
Polynomial.eval_one
pow_zero
Int.cast_natCast
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Real.pi_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
node.eq_1
T_real_cos
Real.cos_nat_mul_pi
leadingCoeff_eq_iff_of_forall_abs_le_one 📖mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
Real
Real.semiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Real.instLE
abs
Real.lattice
Real.instAddGroup
Polynomial.eval
Real.instOne
Polynomial.leadingCoeff
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
T
Real.commRing
Nat.instAtLeastTwoHAddOfNat
coeff_eq_iff_of_forall_abs_le_one
CanLift.prf
WithBot.canLift
Mathlib.Tactic.Contrapose.contrapose₃
Polynomial.degree_eq_bot
Polynomial.leadingCoeff_zero
ne_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
ge_of_eq
Mathlib.Tactic.Contrapose.contrapose₁
leadingCoeff_le_of_forall_abs_le_one
le_of_eq
pow_lt_pow_right₀
Real.instZeroLEOneClass
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Nat.cast_one
eq_of_le_of_ge
Polynomial.natDegree_eq_of_degree_eq_some
Polynomial.leadingCoeff.eq_1
leadingCoeff_T
Real.instIsDomain
ZeroLEOneClass.neZero.two
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
leadingCoeff_le_of_forall_abs_le_one 📖mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
Real
Real.semiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Real.instLE
abs
Real.lattice
Real.instAddGroup
Polynomial.eval
Real.instOne
Polynomial.leadingCoeff
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
CanLift.prf
WithBot.canLift
Polynomial.degree_ne_bot
WithBot.coe_le
Polynomial.leadingCoeff.eq_1
Polynomial.natDegree_eq_of_degree_eq_some
le_imp_le_of_le_of_le
coeff_le_of_forall_abs_le_one
le_of_eq
le_refl
pow_le_pow_right₀
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
node_eq_neg_one 📖mathematicalnode
Real
Real.instNeg
Real.instOne
mul_div_cancel_left₀
EuclideanDomain.toMulDivCancelClass
RCLike.charZero_rclike
Real.cos_pi
node_eq_one 📖mathematicalnode
Real
Real.instOne
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
MulZeroClass.zero_mul
zero_div
Real.cos_zero
node_lt 📖mathematicalReal
Real.instLT
node
strictAntiOn_node
Finset.mem_coe
Finset.mem_range_succ_iff
node_mem_Icc 📖mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instNeg
Real.instOne
node
Set.mem_Icc
Real.neg_one_le_cos
Real.cos_le_one
strictAntiOn_node 📖mathematicalStrictAntiOn
Real
Nat.instPreorder
Real.instPreorder
node
SetLike.coe
Finset
Finset.instSetLike
Finset.range
eq_or_ne
zero_add
Finset.coe_singleton
StrictAntiOn.comp_strictMonoOn
Real.strictAntiOn_cos
StrictMono.strictMonoOn
StrictMono.mul_const
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Real.pi_pos
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos'
NeZero.charZero_one
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Set.mem_Icc
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Nat.cast_nonneg'
le_of_lt
mul_div_assoc
mul_div_cancel₀
Nat.cast_ne_zero
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Nat.cast_le
Finset.mem_range_succ_iff
Finset.mem_coe
div_pos
sumNodes_eq_sumNodes_T_iff 📖mathematicalReal
Real.instLT
Real.instZero
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
Real.semiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Real.instLE
abs
Real.lattice
Real.instAddGroup
Polynomial.eval
sumNodes
T
Real.commRing
Polynomial.eq_of_degrees_lt_of_eval_finset_eq
Real.instIsDomain
lt_of_le_of_lt
Nat.cast_lt
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Finset.card_image_of_injOn
StrictAntiOn.injOn
strictAntiOn_node
Finset.card_range
le_refl
degree_T
ZeroLEOneClass.neZero.two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.instIsOrderedAddMonoid
ge_of_eq
sumNodes.eq_1
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Finset.mem_image
Finset.mem_Iic
Finset.mem_range_succ_iff
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
eval_T_real_node
neg_pow'
neg_neg
one_pow
node_mem_Icc
le_of_lt
Finset.sum_lt_sum
Real.instIsOrderedCancelAddMonoid
lt_of_le_of_ne
ne_of_lt
Finset.sum_congr
sumNodes_le_sumNodes_T 📖mathematicalReal
Real.instLE
Real.instZero
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
abs
Real.lattice
Real.instAddGroup
Polynomial.eval
Real.semiring
sumNodes
T
Real.commRing
sumNodes.eq_1
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
node_mem_Icc
Finset.mem_Iic
eval_T_real_node
one_mul
zero_lt_prod_node_sub_node 📖mathematicalReal
Real.instLT
Real.instZero
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
Finset.prod
Real.instCommMonoid
Finset.erase
Finset.range
Real.instSub
node
eq_or_ne
pow_zero
Finset.prod_congr
zero_add
Finset.erase_singleton
mul_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Finset.prod_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instNontrivial
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
neg_one_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_neg
node_lt
Finset.mem_range
sub_pos
Finset.mem_Ioc
Finset.prod_union
mul_assoc
mul_pos
Finset.card_range
Finset.prod_const
Finset.prod_mul_distrib

---

← Back to Index