Documentation Verification Report

Complex

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Complex.lean

Statistics

MetricCount
Definitions0
TheoremscontinuousOn_tan, continuous_tan, cos_eq_cos_iff, cos_eq_iff_quadratic, cos_eq_neg_one_iff, cos_eq_one_iff, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, cos_eq_zero_iff, cos_ne_zero_iff, cos_surjective, range_cos, range_sin, sin_eq_neg_one_iff, sin_eq_one_iff, sin_eq_sin_iff, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, sin_eq_zero_iff, sin_ne_zero_iff, sin_surjective, tan_add, tan_add', tan_add_mul_I, tan_eq, tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq, tan_eq_zero_iff, tan_eq_zero_iff', tan_eq_zero_of_cos_eq_zero, tan_int_mul_pi_div_two, tan_ne_zero_iff, tan_sub, tan_sub', tan_two_mul, abs_cos_eq_one_iff, abs_sin_eq_one_iff, cos_eq_cos_iff, cos_eq_neg_one_iff, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, cos_eq_zero_iff, cos_ne_zero_iff, sin_eq_neg_one_iff, sin_eq_one_iff, sin_eq_sin_iff, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq, tan_eq_zero_iff, tan_eq_zero_iff', tan_eq_zero_of_cos_eq_zero, tan_ne_zero_iff
48
Total48

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_tan πŸ“–mathematicalβ€”ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
tan
setOf
cos
instZero
β€”ContinuousOn.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
continuousOn_sin
continuousOn_cos
continuous_tan πŸ“–mathematicalβ€”Continuous
Set.Elem
Complex
setOf
cos
instZero
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
tan
β€”continuousOn_iff_continuous_restrict
continuousOn_tan
cos_eq_cos_iff πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
ofReal
Real.pi
instSub
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_zero
cos_sub_cos
neg_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
instCharZero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
mul_comm
mul_right_comm
Mathlib.Tactic.FieldSimp.subst_add
Int.cast_neg
neg_add_cancel_left
cos_eq_iff_quadratic πŸ“–mathematicalβ€”cos
Complex
instAdd
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
exp
instMul
I
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
instZero
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_zero
neg_mul
exp_neg
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
MulZeroClass.mul_zero
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
cos_eq_neg_one_iff πŸ“–mathematicalβ€”cos
Complex
instNeg
instOne
instAdd
ofReal
Real.pi
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
neg_eq_iff_eq_neg
cos_sub_pi
cos_eq_one_iff
cos_eq_one_iff πŸ“–mathematicalβ€”cos
Complex
instOne
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
cos_zero
cos_eq_cos_iff
mul_assoc
mul_left_comm
add_zero
sub_zero
cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq πŸ“–mathematicalβ€”cos
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
tan
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
mul_div_cancelβ‚€
two_ne_zero
CharZero.NeZero.two
instCharZero
cos_two_mul'
div_eq_mul_inv
inv_one_add_tan_sq
tan_mul_cos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.mul_one
cos_eq_zero_iff πŸ“–mathematicalβ€”cos
Complex
instZero
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
div_eq_iff
two_ne_zero
CharZero.NeZero.two
instCharZero
MulZeroClass.zero_mul
add_eq_zero_iff_eq_neg
neg_eq_neg_one_mul
exp_ne_zero
exp_sub
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
cos.eq_1
exp_pi_mul_I
exp_eq_exp_iff_exists_int
mul_right_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.div_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
I_ne_zero
cos_ne_zero_iff πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Push.not_forall_eq
cos_eq_zero_iff
cos_surjective πŸ“–mathematicalβ€”Complex
cos
β€”Nat.instAtLeastTwoHAddOfNat
exists_quadratic_eq_zero
CharZero.NeZero.two
instCharZero
one_ne_zero
NeZero.charZero_one
cpow_nat_inv_pow
two_ne_zero
pow_two
MulZeroClass.mul_zero
zero_add
cos_eq_iff_quadratic
div_mul_cancelβ‚€
I_ne_zero
exp_log
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Nat.cast_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.neg_congr
range_cos πŸ“–mathematicalβ€”Set.range
Complex
cos
Set.univ
β€”Function.Surjective.range_eq
cos_surjective
range_sin πŸ“–mathematicalβ€”Set.range
Complex
sin
Set.univ
β€”Function.Surjective.range_eq
sin_surjective
sin_eq_neg_one_iff πŸ“–mathematicalβ€”sin
Complex
instNeg
instOne
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
neg_eq_iff_eq_neg
cos_add_pi_div_two
cos_eq_one_iff
sin_eq_one_iff πŸ“–mathematicalβ€”sin
Complex
instOne
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
cos_sub_pi_div_two
cos_eq_one_iff
sin_eq_sin_iff πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
ofReal
Real.pi
instSub
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
sin_eq_two_mul_tan_half_div_one_add_tan_half_sq πŸ“–mathematicalβ€”sin
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tan
instAdd
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
mul_div_cancelβ‚€
two_ne_zero
CharZero.NeZero.two
instCharZero
sin_two_mul
MulZeroClass.mul_zero
tan_eq_zero_of_cos_eq_zero
zero_pow
Nat.instCharZero
add_zero
div_one
div_eq_mul_inv
inv_one_add_tan_sq
tan_mul_cos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
sin_eq_zero_iff πŸ“–mathematicalβ€”sin
Complex
instZero
instMul
instIntCast
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
cos_sub_pi_div_two
cos_eq_zero_iff
eq_add_of_sub_eq
Int.cast_add
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
Int.cast_sub
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isInt_add
sin_ne_zero_iff πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Mathlib.Tactic.Push.not_forall_eq
sin_eq_zero_iff
sin_surjective πŸ“–mathematicalβ€”Complex
sin
β€”cos_surjective
Nat.instAtLeastTwoHAddOfNat
sin_add_pi_div_two
tan_add πŸ“–mathematicalComplex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
ofReal
Real.pi
tan
instSub
β€”Nat.instAtLeastTwoHAddOfNat
tan.eq_1
sin_add
cos_add
div_div_div_cancel_rightβ‚€
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
cos_ne_zero_iff
add_div
sub_div
div_self
mul_one
one_mul
Int.cast_add
Int.cast_mul
Int.cast_two
Int.cast_one
tan_int_mul_pi_div_two
add_zero
zero_div
mul_div_assoc
add_mul
Distrib.rightDistribClass
tan_add' πŸ“–mathematicalβ€”tan
Complex
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
instMul
β€”Nat.instAtLeastTwoHAddOfNat
tan_add
tan_add_mul_I πŸ“–mathematicalComplex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
ofReal
Real.pi
I
tan
tanh
instSub
β€”Nat.instAtLeastTwoHAddOfNat
tan_add
tan_mul_I
mul_assoc
tan_eq πŸ“–mathematicalofReal
re
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
Real.pi
im
I
tan
tanh
instSub
β€”Nat.instAtLeastTwoHAddOfNat
re_add_im
tan_add_mul_I
tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq πŸ“–mathematicalβ€”tan
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
mul_div_cancelβ‚€
two_ne_zero
CharZero.NeZero.two
instCharZero
tan_two_mul
tan_eq_zero_iff πŸ“–mathematicalβ€”tan
Complex
instZero
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instIntCast
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
tan.eq_1
div_eq_zero_iff
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
two_ne_zero
CharZero.NeZero.two
instCharZero
MulZeroClass.mul_zero
mul_assoc
sin_two_mul
sin_eq_zero_iff
mul_comm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
tan_eq_zero_iff' πŸ“–mathematicalβ€”tan
Complex
instZero
instMul
instIntCast
ofReal
Real.pi
β€”β€”
tan_eq_zero_of_cos_eq_zero πŸ“–mathematicalcos
Complex
instZero
tanβ€”Nat.instAtLeastTwoHAddOfNat
cos_eq_zero_iff
tan_eq_zero_iff
Int.cast_add
Int.cast_mul
Int.cast_ofNat
Int.cast_one
tan_int_mul_pi_div_two πŸ“–mathematicalβ€”tan
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instIntCast
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”Nat.instAtLeastTwoHAddOfNat
tan_eq_zero_iff
tan_ne_zero_iff πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Push.not_forall_eq
tan_eq_zero_iff
tan_sub πŸ“–mathematicalComplex
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
ofReal
Real.pi
tan
instSub
β€”Nat.instAtLeastTwoHAddOfNat
tan_add
neg_eq_iff_eq_neg
Int.cast_sub
Int.cast_neg
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.IsInt.to_isNat
tan_neg
tan_sub' πŸ“–mathematicalβ€”tan
Complex
instSub
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instOne
instMul
β€”Nat.instAtLeastTwoHAddOfNat
tan_sub
tan_two_mul πŸ“–mathematicalβ€”tan
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
sq
tan_add
Mathlib.Tactic.Push.not_forall_eq

Real

Theorems

NameKindAssumesProvesValidatesDepends On
abs_cos_eq_one_iff πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
cos
instOne
instMul
instIntCast
pi
β€”abs_one
instIsOrderedRing
abs_eq_abs
Nat.instAtLeastTwoHAddOfNat
cos_eq_one_iff
cos_eq_neg_one_iff
Int.even_or_odd
abs_sin_eq_one_iff πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
sin
instOne
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
abs_one
instIsOrderedRing
abs_eq_abs
sin_eq_one_iff
sin_eq_neg_one_iff
Int.even_or_odd
cos_eq_cos_iff πŸ“–mathematicalβ€”cos
Real
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
pi
instSub
β€”Nat.instAtLeastTwoHAddOfNat
Int.cast_ofNat
Int.cast_mul
Complex.ofReal_mul
Complex.cos_eq_cos_iff
cos_eq_neg_one_iff πŸ“–mathematicalβ€”cos
Real
instNeg
instOne
instAdd
pi
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.cast_one
Int.cast_neg
Int.cast_one
Complex.ofReal_neg
Complex.cos_eq_neg_one_iff
cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq πŸ“–mathematicalβ€”cos
Real
DivInvMonoid.toDiv
instDivInvMonoid
instSub
instOne
Monoid.toNatPow
instMonoid
tan
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Complex.cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq
Int.cast_neg
Int.cast_one
Complex.ofReal_neg
cos_eq_zero_iff πŸ“–mathematicalβ€”cos
Real
instZero
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
instOne
pi
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_zero
Nat.cast_one
Int.cast_ofNat
Int.cast_one
Int.cast_add
Int.cast_mul
Complex.ofReal_add
Complex.ofReal_mul
Complex.cos_eq_zero_iff
cos_ne_zero_iff πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_zero
Nat.cast_one
Int.cast_ofNat
Int.cast_one
Int.cast_add
Int.cast_mul
Complex.ofReal_add
Complex.ofReal_mul
Complex.cos_ne_zero_iff
sin_eq_neg_one_iff πŸ“–mathematicalβ€”sin
Real
instNeg
instOne
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
instIntCast
β€”Nat.cast_one
Int.cast_neg
Int.cast_one
Complex.ofReal_neg
Complex.sin_eq_neg_one_iff
sin_eq_one_iff πŸ“–mathematicalβ€”sin
Real
instOne
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
instIntCast
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Complex.sin_eq_one_iff
sin_eq_sin_iff πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instIntCast
pi
instSub
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Int.cast_ofNat
Int.cast_mul
Complex.ofReal_mul
Int.cast_one
Int.cast_add
Complex.ofReal_add
Complex.sin_eq_sin_iff
sin_eq_two_mul_tan_half_div_one_add_tan_half_sq πŸ“–mathematicalβ€”sin
Real
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
tan
instAdd
instOne
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Complex.sin_eq_two_mul_tan_half_div_one_add_tan_half_sq
tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
instOne
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
Complex.tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq
tan_eq_zero_iff πŸ“–mathematicalβ€”tan
Real
instZero
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instIntCast
pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_zero
Complex.tan_eq_zero_iff
tan_eq_zero_iff' πŸ“–mathematicalβ€”tan
Real
instZero
instMul
instIntCast
pi
β€”Nat.cast_zero
Complex.tan_eq_zero_iff'
tan_eq_zero_of_cos_eq_zero πŸ“–mathematicalcos
Real
instZero
tanβ€”Nat.cast_zero
Complex.tan_eq_zero_of_cos_eq_zero
tan_ne_zero_iff πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_zero
Complex.tan_ne_zero_iff

---

← Back to Index