Documentation Verification Report

EulerSineProd

šŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/EulerSineProd.lean

Statistics

MetricCount
Definitions0
Theoremstendsto_euler_sin_prod, antideriv_cos_comp_const_mul, antideriv_sin_comp_const_mul, integral_cos_mul_cos_pow, integral_cos_mul_cos_pow_aux, integral_cos_mul_cos_pow_even, integral_cos_pow_eq, integral_cos_pow_pos, integral_sin_mul_sin_mul_cos_pow_eq, sin_pi_mul_eq, tendsto_integral_cos_pow_mul_div, tendsto_euler_sin_prod
12
Total12

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_euler_sin_prod šŸ“–mathematical—Filter.Tendsto
Complex
instMul
ofReal
Real.pi
Finset.prod
CommRing.toCommMonoid
commRing
Finset.range
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instAdd
instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
sin
—Nat.instAtLeastTwoHAddOfNat
Filter.Tendsto.congr
EulerSine.sin_pi_mul_eq
tendsto_const_nhds
mul_one
Filter.tendsto_mul_iff_of_ne_zero
IsTopologicalDivisionRing.toContinuousInvā‚€
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Continuous.comp_continuousOn'
continuous_cos
ContinuousOn.fun_mul
continuousOn_const
Continuous.continuousOn
continuous_ofReal
mul_comm
ofReal_zero
MulZeroClass.mul_zero
cos_zero
EulerSine.tendsto_integral_cos_pow_mul_div
Filter.Tendsto.comp
Filter.Tendsto.const_mul_atTop'
Nat.instIsStrictOrderedRing
instArchimedeanNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Filter.tendsto_id
one_ne_zero
NeZero.charZero_one
instCharZero
mul_div_assoc

EulerSine

Theorems

NameKindAssumesProvesValidatesDepends On
antideriv_cos_comp_const_mul šŸ“–mathematical—HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Complex
Complex.addCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
instInnerProductSpaceRealComplex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
IsBoundedSMul.continuousSMul
Real.pseudoMetricSpace
Real.instZero
Complex.instZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Complex.cos
—IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Nat.instAtLeastTwoHAddOfNat
hasDerivAt_mul_const
HasDerivAt.comp
Complex.hasDerivAt_sin
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.div_const
HasDerivAt.comp_ofReal
HasDerivAt.congr_simp
mul_rotate
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
one_mul
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
Complex.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
antideriv_sin_comp_const_mul šŸ“–mathematical—HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Complex
Complex.addCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
instInnerProductSpaceRealComplex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
IsBoundedSMul.continuousSMul
Real.pseudoMetricSpace
Real.instZero
Complex.instZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNeg
Complex.cos
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Complex.sin
—IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Nat.instAtLeastTwoHAddOfNat
hasDerivAt_mul_const
HasDerivAt.comp
Complex.hasDerivAt_cos
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.fun_neg
HasDerivAt.div_const
HasDerivAt.comp_ofReal
HasDerivAt.congr_simp
neg_div
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
one_mul
Mathlib.Tactic.FieldSimp.zpow'_one
mul_rotate
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
neg_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
Complex.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
neg_mul
integral_cos_mul_cos_pow šŸ“–mathematical—Complex
Complex.instMul
Complex.instSub
Complex.instOne
DivInvMonoid.toDiv
Complex.instDivInvMonoid
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.cos
Complex.ofReal
Real.cos
Real.instZero
Real.instDivInvMonoid
Real.pi
Real.instNatCast
MeasureTheory.MeasureSpace.volume
Real.measureSpace
—Mathlib.Tactic.Contrapose.contraposeā‚ƒ
Nat.cast_eq_zero
Complex.instCharZero
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
integral_cos_mul_cos_pow_aux
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚ƒ
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
neg_mul
neg_div
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
mul_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
neg_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚‚
Nat.cast_one
sub_eq_iff_eq_add
mul_add
Distrib.leftDistribClass
sub_eq_neg_add
integral_sin_mul_sin_mul_cos_pow_eq
integral_cos_mul_cos_pow_aux šŸ“–mathematical—intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instMul
Complex.cos
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Real.cos
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
Real.instNatCast
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Complex.instDivInvMonoid
Complex.sin
Real.sin
—Nat.instAtLeastTwoHAddOfNat
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.congr_simp
Complex.ofReal_cos
Complex.ofReal_sin
Complex.ofReal_neg
HasDerivAt.ofReal_comp
Real.hasDerivAt_cos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
HasDerivAt.comp
hasDerivAt_pow
mul_comm
Complex.ofReal_zero
MulZeroClass.mul_zero
Complex.sin_zero
zero_div
sub_zero
Real.cos_pi_div_two
zero_pow
ne_of_gt
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
MulZeroClass.zero_mul
zero_sub
intervalIntegral.integral_neg
intervalIntegral.integral_const_mul
intervalIntegral.integral_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
intervalIntegral.integral_mul_deriv_eq_deriv_mul
Complex.instCompleteSpace
antideriv_cos_comp_const_mul
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.comp'
continuous_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.prodMk
Continuous.fun_mul
continuous_const
continuous_id'
Complex.continuous_ofReal
Real.continuous_sin
Continuous.pow
Real.continuous_cos
Complex.continuous_cos
integral_cos_mul_cos_pow_even šŸ“–mathematical—Complex
Complex.instMul
Complex.instSub
Complex.instOne
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instAdd
Complex.instNatCast
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.cos
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.cos
Real.instZero
Real.instDivInvMonoid
Real.pi
Real.instNatCast
MeasureTheory.MeasureSpace.volume
Real.measureSpace
—Nat.instAtLeastTwoHAddOfNat
Nat.cast_add
Nat.cast_mul
mul_one
mul_add
Distrib.leftDistribClass
mul_pow
div_div
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
integral_cos_mul_cos_pow
integral_cos_pow_eq šŸ“–mathematical—intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.cos
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
Real.instOne
Real.sin
—Nat.instAtLeastTwoHAddOfNat
mul_comm
div_eq_iff
one_div_ne_zero
two_ne_zero'
CharZero.NeZero.two
RCLike.charZero_rclike
div_mul
div_one
mul_two
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.continuous_sin
intervalIntegral.integral_add_adjacent_intervals
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
intervalIntegral.integral_comp_sub_left
intervalIntegral.integral_congr
Real.cos_pi_div_two_sub
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
intervalIntegral.integral_comp_add_right
Real.sin_add_pi_div_two
integral_cos_pow_pos šŸ“–mathematical—Real
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.cos
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.MeasureSpace.volume
Real.measureSpace
—Nat.instAtLeastTwoHAddOfNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
integral_sin_pow_pos
integral_cos_pow_eq
integral_sin_mul_sin_mul_cos_pow_eq šŸ“–mathematical—intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instMul
Complex.sin
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.sin
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Real.cos
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
Real.instNatCast
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Complex.instSub
Complex.instDivInvMonoid
Complex.cos
Complex.instOne
—Nat.instAtLeastTwoHAddOfNat
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.comp
hasDerivAt_pow
Complex.hasDerivAt_cos
Complex.ofReal_sin
Complex.ofReal_cos
mul_neg
sub_eq_add_neg
pow_succ'
Nat.cast_sub
LE.le.trans
one_le_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
HasDerivAt.comp_ofReal
HasDerivAt.fun_mul
Complex.hasDerivAt_sin
intervalIntegral.integral_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
mul_one
Real.sin_zero
Real.cos_pi_div_two
Complex.ofReal_zero
zero_pow
MulZeroClass.zero_mul
MulZeroClass.mul_zero
sub_zero
zero_sub
intervalIntegral.integral_neg
intervalIntegral.integral_const_mul
intervalIntegral.integral_sub
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_const
continuous_id'
continuous_mul
Continuous.prodMk
Complex.continuous_cos
Complex.continuous_ofReal
Continuous.pow
Real.continuous_cos
Complex.sin_sq
mul_div_right_comm
sub_div
mul_div
neg_div
pow_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
intervalIntegral.integral_mul_deriv_eq_deriv_mul
Complex.instCompleteSpace
antideriv_sin_comp_const_mul
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Real.continuous_sin
Complex.continuous_sin
sin_pi_mul_eq šŸ“–mathematical—Complex.sin
Complex
Complex.instMul
Complex.ofReal
Real.pi
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Finset.range
Complex.instSub
Complex.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instAdd
Complex.instNatCast
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.cos
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.cos
Real.instZero
Real.instDivInvMonoid
Real.instNatCast
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.normedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMonoid
—Nat.instAtLeastTwoHAddOfNat
eq_or_ne
MulZeroClass.mul_zero
Complex.sin_zero
Finset.prod_congr
zero_pow
Nat.instCharZero
zero_div
sub_zero
Finset.prod_const_one
mul_one
MulZeroClass.zero_mul
Complex.cos_zero
Complex.ofReal_cos
one_mul
pow_zero
Finset.prod_range_zero
integral_one
integral_cos_mul_complex
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
two_ne_zero
CharZero.NeZero.two
Complex.instCharZero
Complex.ofReal_zero
Complex.ofReal_div
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚ƒ
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚ƒ
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Finset.prod_range_succ
mul_add
Distrib.leftDistribClass
integral_cos_pow_eq
integral_sin_pow
Real.sin_zero
Real.sin_pi
pow_succ'
zero_add
mul_assoc
mul_comm
Nat.cast_mul
Nat.cast_ofNat
Nat.cast_succ
integral_cos_mul_cos_pow_even
Complex.ofReal_mul
Complex.ofReal_ne_zero
LT.lt.ne'
integral_cos_pow_pos
Nat.cast_add_one_ne_zero
Complex.ofReal_add
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
tendsto_integral_cos_pow_mul_div šŸ“–mathematicalContinuousOn
Real
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set.Icc
Real.instPreorder
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Filter.Tendsto
Complex.instDivInvMonoid
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.ofReal
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.normedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMonoid
Filter.atTop
Nat.instPreorder
nhds
—Nat.instAtLeastTwoHAddOfNat
div_eq_inv_mul
intervalIntegral.integral_of_le
LT.lt.le
Real.pi_div_two_pos
Real.noAtoms_volume
Real.cos_lt_cos_of_nonneg_of_le_pi_div_two
le_refl
lt_of_le_of_ne
Real.cos_nonneg_of_mem_Icc
Set.Icc_subset_Icc_left
neg_nonpos_of_nonneg
Real.instIsOrderedAddMonoid
Real.cos_zero
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instNoMaxOrderOfNontrivial
closure_Ioo
LT.lt.ne
Set.left_mem_Icc
tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_continuousOn
Real.borelSpace
Complex.instCompleteSpace
EMetricSpace.metrizableSpace
Real.locallyFinite_volume
MeasureTheory.Measure.IsAddHaarMeasure.toIsOpenPosMeasure
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
Real.continuousOn_cos

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_euler_sin_prod šŸ“–mathematical—Filter.Tendsto
Real
instMul
pi
Finset.prod
instCommMonoid
Finset.range
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instAdd
instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sin
—Complex.ofReal_mul
Complex.re_ofReal_mul
Complex.ofReal_prod
Finset.prod_congr
Nat.cast_one
Nat.cast_pow
Nat.cast_add
Complex.ofReal_pow
Complex.ofReal_add
Complex.ofReal_re
Complex.ofReal_sin
Filter.Tendsto.comp
Continuous.tendsto
Complex.continuous_re
Complex.tendsto_euler_sin_prod

---

← Back to Index