Documentation Verification Report

Sinc

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Sinc.lean

Statistics

MetricCount
Definitionssinc
1
Theoremsabs_sinc_le_one, continuous_sinc, neg_one_le_sinc, sin_div_le_inv_abs, sinc_apply, sinc_eq_dslope, sinc_le_inv_abs, sinc_le_one, sinc_neg, sinc_of_ne_zero, sinc_zero
11
Total12

Real

Definitions

NameCategoryTheorems
sinc πŸ“–CompOp
19 mathmath: abs_sinc_le_one, AEMeasurable.sinc, MeasureTheory.AEStronglyMeasurable.sinc, continuous_sinc, sinc_eq_dslope, measurable_sinc, Measurable.sinc, integrable_sinc, integral_exp_mul_I_eq_sinc, MeasureTheory.integral_charFun_Icc, stronglyMeasurable_sinc, neg_one_le_sinc, sinc_le_one, sinc_zero, MeasureTheory.StronglyMeasurable.sinc, sinc_of_ne_zero, sinc_apply, sinc_neg, sinc_le_inv_abs

Theorems

NameKindAssumesProvesValidatesDepends On
abs_sinc_le_one πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
sinc
instOne
β€”sinc_zero
abs_one
instIsOrderedRing
sinc_of_ne_zero
abs_div
instIsStrictOrderedRing
div_le_of_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
zero_le_one
instZeroLEOneClass
one_mul
abs_sin_le_abs
continuous_sinc πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sinc
β€”continuous_iff_continuousAt
sinc_eq_dslope
continuousAt_dslope_of_ne
Continuous.continuousAt
continuous_sin
neg_one_le_sinc πŸ“–mathematicalβ€”Real
instLE
instNeg
instOne
sinc
β€”abs_le
instIsOrderedAddMonoid
abs_sinc_le_one
sin_div_le_inv_abs πŸ“–mathematicalβ€”Real
instLE
DivInvMonoid.toDiv
instDivInvMonoid
sin
instInv
abs
lattice
instAddGroup
β€”lt_trichotomy
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.le
one_div
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
div_eq_mul_inv
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
mul_assoc
mul_inv_cancelβ‚€
LT.lt.ne
neg_le
covariant_swap_add_of_covariant_add
neg_one_le_sin
sin_zero
div_zero
abs_zero
inv_zero
abs_of_nonneg
mul_inv_le_iffβ‚€
inv_mul_cancelβ‚€
LT.lt.ne'
sin_le_one
sinc_apply πŸ“–mathematicalβ€”sinc
Real
instZero
decidableEq
instOne
DivInvMonoid.toDiv
instDivInvMonoid
sin
β€”β€”
sinc_eq_dslope πŸ“–mathematicalβ€”sinc
dslope
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
sin
instZero
β€”div_eq_inv_mul
Function.update.congr_simp
deriv_sin
cos_zero
Function.update_apply
sub_zero
sin_zero
sinc_le_inv_abs πŸ“–mathematicalβ€”Real
instLE
sinc
instInv
abs
lattice
instAddGroup
β€”sinc_of_ne_zero
sin_div_le_inv_abs
sinc_le_one πŸ“–mathematicalβ€”Real
instLE
sinc
instOne
β€”abs_le
instIsOrderedAddMonoid
abs_sinc_le_one
sinc_neg πŸ“–mathematicalβ€”sinc
Real
instNeg
β€”neg_zero
sinc_zero
sinc_of_ne_zero
neg_ne_zero
sin_neg
neg_div_neg_eq
sinc_of_ne_zero πŸ“–mathematicalβ€”sinc
Real
DivInvMonoid.toDiv
instDivInvMonoid
sin
β€”β€”
sinc_zero πŸ“–mathematicalβ€”sinc
Real
instZero
instOne
β€”β€”

---

← Back to Index