đ Source: Mathlib/Analysis/SpecificLimits/FloorPow.lean
mul_pow_le_nat_floor_pow
sum_div_nat_floor_pow_sq_le_div_sq
sum_div_pow_sq_le_div_sq
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
tendsto_div_of_monotone_of_tendsto_div_floor_pow
Real
Real.instLT
Real.instOne
Real.instLE
Real.instMul
Real.instSub
Real.instInv
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Nat.floor
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
eq_or_ne
pow_zero
mul_one
Nat.floor_one
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LT.lt.le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
sub_le_sub_left
covariant_swap_add_of_covariant_add
one_le_div
le_self_powâ
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Nat.sub_one_lt_floor
Real.instZero
Finset.sum
Real.instAddCommMonoid
Finset.filter
Real.decidableLT
Finset.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
inv_lt_one_of_one_ltâ
Finset.sum_le_sum_of_subset_of_nonneg
Finset.monotone_filter_right
lt_imp_lt_of_le_of_le
le_refl
Nat.floor_le
le_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
Finset.sum_le_sum
mul_div_assoc'
div_le_div_iffâ
sq_pos_of_pos
LT.lt.trans_le
one_mul
mul_pow
pow_le_pow_leftâ
IsOrderedRing.toMulPosMono
div_eq_inv_mul
le_div_iffâ
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_comm
Finset.mul_sum
mul_le_mul_of_nonneg_left
inv_pos_of_pos
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalâ
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalâ
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit1
Mathlib.Tactic.Ring.pow_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
inv_pos
div_eq_mul_inv
pow_lt_oneâ
inv_nonneg
two_ne_zero
mul_sub
inv_pow
mul_assoc
mul_inv_cancelâ
LT.lt.ne'
pow_one
pow_right_monoâ
one_le_two
Nat.instZeroLEOneClass
Nat.instIsOrderedAddMonoid
Nat.floor_le_of_le
div_lt_iffâ
Real.log_pos
Real.log_pow
Real.log_lt_log
div_pos
Finset.sum_congr
one_div
geom_sum_Ico_le_of_lt_one
sq_nonneg
div_le_div_of_nonneg_right
Real.rpow_natCast
Real.rpow_le_rpow_of_exponent_ge
sub_nonneg
Real.log_injOn_pos
Real.rpow_pos_of_pos
Set.mem_Ioi
Real.log_rpow
Real.log_inv
mul_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalâ
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalâ
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_natCast
Nat.cast_zero
Real.rpow_sub
Real.rpow_one
div_inv_eq_mul
Monotone
Nat.instPreorder
Real.instPreorder
Filter.Eventually
Filter.atTop
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Filter.Tendsto.div_atTop
instOrderTopologyReal
tendsto_const_nhds
tendsto_natCast_atTop_iff
Real.instArchimedean
le_of_tendsto_of_tendsto'
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.atTop_neBot
instIsDirectedOrder
Nat.instIsStrictOrderedRing
instArchimedeanNat
zero_le
Nat.instCanonicallyOrderedAdd
Nat.cast_nonneg'
lt_add_iff_pos_right
contravariant_lt_of_covariant_le
Filter.mp_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Asymptotics.isLittleO_iff
Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
tendsto_sub_nhds_zero_iff
instIsTopologicalAddGroupReal
Filter.univ_mem'
Nat.cast_pos'
mul_le_mul_of_nonneg_right
LE.le.trans
le_abs_self
CStarRing.norm_of_mem_unitary
instCStarRingReal
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Filter.eventually_atTop
Filter.Eventually.and
Filter.Ici_mem_atTop
Filter.Eventually.exists
Filter.tendsto_atTop
Nat.find_spec
Finset.le_max'
Finset.mem_image_of_mem
Finset.mem_range
lt_irrefl
LE.le.trans_lt
lt_of_lt_of_le
Nat.succ_pos'
Nat.find_min
sub_le_sub
Nat.mono_cast
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
add_le_add
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
add_le_add_left
mul_pos
add_pos_of_pos_of_nonneg
add_pos'
neg_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_evalâ
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.Ring.neg_congr
le_trans
neg_le_abs
sub_le_sub_right
le_rfl
tendsto_order
Filter.Tendsto.mono_left
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
Filter.tendsto_id
nhdsWithin_le_nhds
nhdsGT_neBot
LinearOrderedSemiField.toDenselyOrdered
instNoMaxOrderOfNontrivial
MulZeroClass.zero_mul
add_zero
self_mem_nhdsWithin
inv_mul_cancelâ
Nat.cast_ne_zero
lt_of_not_ge
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
inv_nonneg_of_nonneg
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_evalâ
Right.add_pos_of_nonneg_of_pos
one_le_powâ
Filter.Tendsto.div
IsTopologicalDivisionRing.toContinuousInvâ
instIsTopologicalDivisionRingReal
Filter.Tendsto.comp
tendsto_nat_floor_div_atTop
tendsto_pow_atTop_atTop_of_one_lt
Filter.tendsto_add_atTop_nat
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
div_le_iffâ
tendsto_nat_floor_atTop
---
â Back to Index