Documentation Verification Report

Normed

πŸ“ Source: Mathlib/Analysis/SpecificLimits/Normed.lean

Statistics

MetricCount
DefinitionsHasSummableGeomSeries, oneSub
2
Theoremstendsto_div_one_add_pow_nhds_one, tendsto_div_one_add_pow_nhds_zero, alternating_series_le_tendsto, cauchySeq_alternating_series_of_tendsto_zero, cauchySeq_series_mul_of_tendsto_zero_of_bounded, tendsto_alternating_series_of_tendsto_zero, tendsto_le_alternating_series, summable_geometric_of_norm_lt_one, alternating_series_le_tendsto, cauchySeq_alternating_series_of_tendsto_zero, cauchySeq_series_mul_of_tendsto_zero_of_bounded, tendsto_alternating_series_of_tendsto_zero, tendsto_le_alternating_series, cauchy_series_of_le_geometric', cauchy_series_of_le_geometric'', summable_pow_div_factorial, cauchySeq_of_le_geometric, tendsto_alternating_series_tsum, TFAE_exists_lt_isLittleO_pow, val_oneSub, alternating_series_error_bound, cauchySeq_finset_of_geometric_bound, cauchy_series_of_le_geometric, dist_partial_sum, dist_partial_sum', dist_partial_sum_le_of_le_geometric, exists_norm_le_of_cauchySeq, geom_series_eq_inverse, geom_series_mul_neg, geom_series_mul_one_add, geom_series_mul_shift, geom_series_succ, hasSum_choose_mul_geometric_of_norm_lt_one, hasSum_choose_mul_geometric_of_norm_lt_one', hasSum_coe_mul_geometric_of_norm_lt_one, hasSum_coe_mul_geometric_of_norm_lt_one', hasSum_geom_series_inverse, hasSum_geometric_of_abs_lt_one, hasSum_geometric_of_norm_lt_one, instHasSummableGeomSeries, instHasSummableGeomSeriesOfCompleteSpace, isBigO_pow_pow_of_le_left, isLittleO_coe_const_pow_of_one_lt, isLittleO_pow_const_const_pow_of_one_lt, isLittleO_pow_const_mul_const_pow_const_pow_of_norm_lt, isLittleO_pow_pow_of_abs_lt_left, isLittleO_pow_pow_of_lt_left, isUnit_one_sub_of_norm_lt_one, mul_neg_geom_series, norm_sub_le_of_geometric_bound_of_hasSum, norm_sum_neg_one_pow_le, not_summable_of_ratio_norm_eventually_ge, not_summable_of_ratio_test_tendsto_gt_one, summable_choose_mul_geometric_of_norm_lt_one, summable_descFactorial_mul_geometric_of_norm_lt_one, summable_geometric_iff_norm_lt_one, summable_geometric_of_abs_lt_one, summable_geometric_of_norm_lt_one, summable_norm_geometric_of_norm_lt_one, summable_norm_mul_geometric_of_norm_lt_one, summable_norm_pow_mul_geometric_of_norm_lt_one, summable_of_ratio_norm_eventually_le, summable_of_ratio_test_tendsto_lt_one, summable_pow_mul_geometric_of_norm_lt_one, summable_powerSeries_of_norm_lt, summable_powerSeries_of_norm_lt_one, tendsto_const_div_pow, tendsto_intCast_atBot_cobounded, tendsto_intCast_atBot_sup_atTop_cobounded, tendsto_intCast_atTop_cobounded, tendsto_natCast_atTop_cobounded, tendsto_pow_atTop_nhds_zero_iff_norm_lt_one, tendsto_pow_atTop_nhds_zero_of_abs_lt_one, tendsto_pow_atTop_nhds_zero_of_norm_lt_one, tendsto_pow_const_div_const_pow_of_one_lt, tendsto_pow_const_mul_const_pow_of_abs_lt_one, tendsto_pow_const_mul_const_pow_of_lt_one, tendsto_self_mul_const_pow_of_abs_lt_one, tendsto_self_mul_const_pow_of_lt_one, tendsto_smul_comp_nat_floor_of_tendsto_mul, tendsto_smul_comp_nat_floor_of_tendsto_nsmul, tendsto_smul_congr_of_tendsto_left_cobounded_of_isBoundedUnder, tendsto_zero_of_isBoundedUnder_smul_of_tendsto_cobounded, tsum_choose_mul_geometric_of_norm_lt_one, tsum_choose_mul_geometric_of_norm_lt_one', tsum_coe_mul_geometric_of_norm_lt_one, tsum_coe_mul_geometric_of_norm_lt_one', tsum_geometric_le_of_norm_lt_one, tsum_geometric_of_abs_lt_one, tsum_geometric_of_norm_lt_one
90
Total92

AbsoluteValue

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_div_one_add_pow_nhds_one πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
funLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Filter.atTop
Nat.instPreorder
nhds
β€”map_divβ‚€
monoidWithZeroHomClass
Field.isDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
map_one
Filter.Tendsto.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
IsStrictOrderedRing.toIsTopologicalDivisionRing
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
tendsto_const_nhds
Filter.Tendsto.const_add
IsTopologicalSemiring.toContinuousAdd
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
nonneg
Filter.Tendsto.const_sub
IsTopologicalAddGroup.to_continuousSub
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
tendsto_of_tendsto_of_tendsto_of_le_of_le
sub_zero
add_zero
le_trans
map_pow
le_add
IsStrictOrderedRing.noZeroDivisors
add_le
one_ne_zero
NeZero.one
one_div_one
tendsto_div_one_add_pow_nhds_zero πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
funLike
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Filter.atTop
Nat.instPreorder
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”div_eq_mul_inv
one_mul
map_invβ‚€
monoidWithZeroHomClass
Field.isDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
add_comm
Filter.Tendsto.inv_tendsto_atTop
Filter.tendsto_atTop_mono
le_add
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
map_pow
map_one
Filter.Tendsto.congr
sub_eq_add_neg
Filter.tendsto_atTop_add_right_of_le
IsOrderedRing.toIsOrderedAddMonoid
tendsto_pow_atTop_atTop_of_one_lt
le_rfl

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
alternating_series_le_tendsto πŸ“–mathematicalFilter.Tendsto
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Filter.atTop
Nat.instPreorder
nhds
Antitone
PartialOrder.toPreorder
Preorder.toLEβ€”monotone_nat_of_le_succ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Finset.sum_range_succ
pow_succ'
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
neg_one_mul
one_mul
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_le_add_right
Monotone.ge_of_tendsto
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
Filter.tendsto_atTop_mono
Filter.tendsto_id
cauchySeq_alternating_series_of_tendsto_zero πŸ“–mathematicalAntitone
Real
Nat.instPreorder
Real.instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
CauchySeq
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
β€”Finset.sum_congr
mul_comm
cauchySeq_series_mul_of_tendsto_zero_of_bounded
norm_sum_neg_one_pow_le
cauchySeq_series_mul_of_tendsto_zero_of_bounded πŸ“–mathematicalAntitone
Real
Nat.instPreorder
Real.instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.range
CauchySeq
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
β€”neg_le_neg
Real.instIsOrderedAddMonoid
neg_zero
Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
Finset.sum_congr
neg_smul
Finset.sum_neg_distrib
neg_neg
CauchySeq.neg
SeminormedAddCommGroup.to_isUniformAddGroup
Monotone.cauchySeq_series_mul_of_tendsto_zero_of_bounded
tendsto_alternating_series_of_tendsto_zero πŸ“–mathematicalAntitone
Real
Nat.instPreorder
Real.instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
β€”cauchySeq_tendsto_of_complete
Real.instCompleteSpace
cauchySeq_alternating_series_of_tendsto_zero
tendsto_le_alternating_series πŸ“–mathematicalFilter.Tendsto
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Filter.atTop
Nat.instPreorder
nhds
Antitone
PartialOrder.toPreorder
Preorder.toLEβ€”antitone_nat_of_succ_le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Finset.sum_range_succ
pow_succ'
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
neg_one_mul
neg_neg
one_mul
sub_add_eq_add_sub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_le_add_right
le_of_tendsto
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
Filter.tendsto_atTop_mono
Filter.tendsto_id

HasSummableGeomSeries

Theorems

NameKindAssumesProvesValidatesDepends On
summable_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SummationFilter.unconditional
β€”β€”

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
alternating_series_le_tendsto πŸ“–mathematicalFilter.Tendsto
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Filter.atTop
Nat.instPreorder
nhds
Monotone
PartialOrder.toPreorder
Preorder.toLEβ€”monotone_nat_of_le_succ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Finset.sum_range_succ
pow_succ'
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
neg_one_mul
neg_neg
one_mul
sub_add_eq_add_sub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_le_add_right
ge_of_tendsto
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
Filter.tendsto_atTop_mono
Filter.tendsto_id
cauchySeq_alternating_series_of_tendsto_zero πŸ“–mathematicalMonotone
Real
Nat.instPreorder
Real.instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
CauchySeq
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
β€”Finset.sum_congr
mul_comm
cauchySeq_series_mul_of_tendsto_zero_of_bounded
norm_sum_neg_one_pow_le
cauchySeq_series_mul_of_tendsto_zero_of_bounded πŸ“–mathematicalMonotone
Real
Nat.instPreorder
Real.instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.range
CauchySeq
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
β€”cauchySeq_shift
Finset.sum_range_by_parts
Finset.sum_congr
sub_eq_add_neg
tsub_zero
Nat.instOrderedSub
CauchySeq.add
SeminormedAddCommGroup.to_isUniformAddGroup
Filter.Tendsto.cauchySeq
NormedField.tendsto_zero_smul_of_tendsto_zero_of_bounded
NormedSpace.toIsBoundedSMul
Filter.eventually_map
Filter.Eventually.of_forall
CauchySeq.neg
cauchySeq_range_of_norm_bounded
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
UniformContinuous.comp_cauchySeq
Real.uniformContinuous_const_mul
Finset.sum_range_sub
CauchySeq.add_const
instIsUniformAddGroupReal
norm_smul
NormedSpace.toNormSMulClass
mul_comm
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
abs_nonneg
tendsto_alternating_series_of_tendsto_zero πŸ“–mathematicalMonotone
Real
Nat.instPreorder
Real.instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
β€”cauchySeq_tendsto_of_complete
Real.instCompleteSpace
cauchySeq_alternating_series_of_tendsto_zero
tendsto_le_alternating_series πŸ“–mathematicalFilter.Tendsto
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Filter.atTop
Nat.instPreorder
nhds
Monotone
PartialOrder.toPreorder
Preorder.toLEβ€”antitone_nat_of_succ_le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Finset.sum_range_succ
pow_succ'
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
neg_one_mul
one_mul
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_le_add_right
Antitone.le_of_tendsto
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
Filter.tendsto_atTop_mono
Filter.tendsto_id

NormedAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_series_of_le_geometric' πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Monoid.toNatPow
Real.instMonoid
CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Nat.instPreorder
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
β€”CauchySeq.comp_tendsto
cauchy_series_of_le_geometric
Filter.tendsto_add_atTop_nat
cauchy_series_of_le_geometric'' πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instOne
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Monoid.toNatPow
Real.instMonoid
CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Nat.instPreorder
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
β€”mul_nonneg_iff_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
LE.le.trans
norm_nonneg
le_refl
not_lt
cauchySeq_sum_of_eventually_eq
cauchy_series_of_le_geometric'
norm_zero
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
pow_nonneg
LT.lt.le

Real

Theorems

NameKindAssumesProvesValidatesDepends On
summable_pow_div_factorial πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
SummationFilter.unconditional
β€”instIsStrictOrderedRing
LT.lt.trans_le
zero_lt_one
instZeroLEOneClass
NeZero.one
instNontrivial
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instIsOrderedRing
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.lt_floor_add_one
pow_succ'
Nat.factorial_succ
Nat.cast_mul
div_mul_div_comm
norm_mul
NormedDivisionRing.toNormMulClass
norm_div
norm_natCast
Nat.cast_succ
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
div_le_divβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_nonneg
le_refl
Right.add_pos_of_nonneg_of_pos
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
add_le_add_left
Nat.mono_cast
summable_of_ratio_norm_eventually_le
instCompleteSpace
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat

SeminormedAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_of_le_geometric πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Norm.norm
toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
toSeminormedAddGroup
Real.instMul
Monoid.toNatPow
Real.instMonoid
CauchySeq
PseudoMetricSpace.toUniformSpace
toPseudoMetricSpace
Nat.instPreorder
β€”cauchySeq_of_le_geometric
dist_eq_norm

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_alternating_series_tsum πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Filter.Tendsto
Finset.sum
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Filter.atTop
Nat.instPreorder
nhds
tsum
β€”tendsto_sum_tsum_nat
alternating

Units

Definitions

NameCategoryTheorems
oneSub πŸ“–CompOp
2 mathmath: NormedRing.inverse_one_sub, val_oneSub

Theorems

NameKindAssumesProvesValidatesDepends On
val_oneSub πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
oneSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”

(root)

Definitions

NameCategoryTheorems
HasSummableGeomSeries πŸ“–CompData
2 mathmath: instHasSummableGeomSeriesOfCompleteSpace, instHasSummableGeomSeries

Theorems

NameKindAssumesProvesValidatesDepends On
TFAE_exists_lt_isLittleO_pow πŸ“–mathematicalβ€”List.TFAE
Real
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instNeg
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Monoid.toNatPow
Real.instMonoid
Real.instZero
Asymptotics.IsBigO
Real.instLT
Filter.Eventually
Real.instLE
abs
Real.lattice
Real.instAddGroup
β€”LT.lt.trans_le
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LE.le.trans_lt
Set.Subset.trans
Set.Ioo_subset_Ico_self
Asymptotics.IsLittleO.isBigO
exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
abs_lt
covariant_swap_add_of_covariant_add
abs_nonneg
Asymptotics.IsBigO.trans_isLittleO
isLittleO_pow_pow_of_abs_lt_left
le_abs_self
Asymptotics.bound_of_isBigO_nat_atTop
abs_pow
Real.instIsOrderedRing
abs_of_nonneg
LT.lt.le
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
LT.lt.ne'
sign_cases_of_C_mul_pow_nonneg
LE.le.trans
Asymptotics.isBigO_zero
MulZeroClass.zero_mul
Asymptotics.isBigO_of_le'
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Filter.Eventually.mono
Asymptotics.IsLittleO.def
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
abs_of_pos
one_mul
Real.norm_eq_abs
Filter.nonneg_of_eventually_pow_nonneg
Asymptotics.IsBigO.of_norm_eventuallyLE
List.tfae_of_cycle
alternating_series_error_bound πŸ“–mathematicalAntitone
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Preorder.toLE
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
tsum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Finset.sum
Finset.range
β€”Antitone.alternating_series_le_tendsto
Summable.tendsto_alternating_series_tsum
Antitone.tendsto_le_alternating_series
le_of_tendsto
instClosedIicTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Summable.tendsto_atTop_zero
IsUniformAddGroup.to_topologicalAddGroup
Filter.mp_mem
Filter.Ici_mem_atTop
Filter.univ_mem'
Nat.even_or_odd
Nat.instAtLeastTwoHAddOfNat
even_iff_exists_two_mul
abs_sub_le_iff
IsOrderedRing.toIsOrderedAddMonoid
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
add_comm
Finset.sum_range_succ
Even.neg_pow
Distrib.rightDistribClass
one_pow
one_mul
LE.le.trans
le_add_of_nonneg_right
odd_iff_exists_bit1
Finset.sum_congr
AddGroup.toOrderedSub
pow_add
pow_one
mul_one
neg_mul
cauchySeq_finset_of_geometric_bound πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Monoid.toNatPow
Real.instMonoid
CauchySeq
Finset
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
PartialOrder.toPreorder
Finset.partialOrder
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”cauchySeq_finset_of_norm_bounded
HasSum.summable
aux_hasSum_of_le_geometric
dist_partial_sum_le_of_le_geometric
cauchy_series_of_le_geometric πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Monoid.toNatPow
Real.instMonoid
CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Nat.instPreorder
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
β€”cauchySeq_of_le_geometric
dist_partial_sum'
dist_partial_sum πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
Norm.norm
SeminormedAddCommGroup.toNorm
β€”Finset.sum_range_succ
dist_eq_norm
add_sub_cancel_left
dist_partial_sum' πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
Norm.norm
SeminormedAddCommGroup.toNorm
β€”Finset.sum_range_succ
dist_eq_norm'
add_sub_cancel_left
dist_partial_sum_le_of_le_geometric πŸ“–mathematicalReal
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Monoid.toNatPow
Real.instMonoid
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
β€”Finset.sum_range_succ
dist_eq_norm
norm_neg
neg_sub
add_sub_cancel_left
exists_norm_le_of_cauchySeq πŸ“–mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Nat.instPreorder
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Finset.range
Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
β€”cauchySeq_iff_le_tendsto_0
dist_partial_sum'
zero_le
Nat.instCanonicallyOrderedAdd
geom_series_eq_inverse πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SummationFilter.unconditional
Ring.inverse
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Ring.inverse_unit
geom_series_mul_neg πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Summable.tsum_pow_mul_one_sub
NonUnitalSeminormedRing.toIsTopologicalRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable_geometric_of_norm_lt_one
geom_series_mul_one_add πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Distrib.toAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
add_mul
Distrib.rightDistribClass
one_mul
geom_series_mul_shift
geom_series_succ
two_mul
add_sub_assoc
geom_series_mul_shift πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
β€”Summable.tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
summable_geometric_of_norm_lt_one
geom_series_succ πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”eq_sub_iff_add_eq
Summable.tsum_eq_zero_add
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable_geometric_of_norm_lt_one
pow_zero
add_comm
hasSum_choose_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.choose
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SummationFilter.unconditional
β€”one_div
Ring.inverse_eq_inv'
inv_pow
hasSum_choose_mul_geometric_of_norm_lt_one'
instHasSummableGeomSeries
hasSum_choose_mul_geometric_of_norm_lt_one' πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.choose
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Ring.inverse
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
SummationFilter.unconditional
β€”add_zero
Nat.choose_zero_right
Nat.cast_one
one_mul
zero_add
pow_one
hasSum_geom_series_inverse
summable_norm_mul_geometric_of_norm_lt_one
Asymptotics.isBigO_iff
Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
Nat.abs_cast
Real.instIsOrderedRing
Nat.cast_pow
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Nat.choose_le_choose
Nat.choose_le_pow
Finset.sum_congr
mul_assoc
pow_add
Nat.sum_range_add_choose
add_assoc
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
pow_succ
hasSum_sum_range_mul_of_summable_norm'
HasSum.summable
summable_norm_geometric_of_norm_lt_one
summable_geometric_of_norm_lt_one
hasSum_coe_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
SummationFilter.unconditional
β€”div_eq_mul_inv
Ring.inverse_eq_inv'
inv_pow
hasSum_coe_mul_geometric_of_norm_lt_one'
instHasSummableGeomSeries
hasSum_coe_mul_geometric_of_norm_lt_one' πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Ring.inverse
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
SummationFilter.unconditional
β€”Nat.choose_one_right
Nat.cast_add
Nat.cast_one
hasSum_choose_mul_geometric_of_norm_lt_one'
hasSum_geom_series_inverse
add_mul
Distrib.rightDistribClass
one_mul
add_sub_cancel_right
Ring.mul_inverse_cancel
isUnit_one_sub_of_norm_lt_one
sub_eq_add_neg
pow_succ
pow_zero
neg_mul
mul_assoc
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Abel.zero_termg
HasSum.sub
SeminormedAddCommGroup.toIsTopologicalAddGroup
hasSum_geom_series_inverse πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Ring.inverse
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SummationFilter.unconditional
β€”geom_series_eq_inverse
Summable.hasSum
summable_geometric_of_norm_lt_one
hasSum_geometric_of_abs_lt_one πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instOne
HasSum
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Monoid.toNatPow
Real.instMonoid
Real.instInv
Real.instSub
SummationFilter.unconditional
β€”hasSum_geometric_of_norm_lt_one
hasSum_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
SummationFilter.unconditional
β€”Mathlib.Tactic.Contrapose.contrapose₃
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_pow_atTop_nhds_zero_of_norm_lt_one
tendsto_const_nhds
hasSum_iff_tendsto_nat_of_summable_norm
norm_pow
NormedDivisionRing.toNormMulClass
summable_geometric_of_lt_one
norm_nonneg
geom_sum_eq
div_eq_mul_inv
zero_sub
neg_mul
one_mul
neg_inv
neg_sub
instHasSummableGeomSeries πŸ“–mathematicalβ€”HasSummableGeomSeries
NormedDivisionRing.toNormedRing
β€”HasSum.summable
hasSum_geometric_of_norm_lt_one
instHasSummableGeomSeriesOfCompleteSpace πŸ“–mathematicalβ€”HasSummableGeomSeriesβ€”summable_geometric_of_lt_one
norm_nonneg
Summable.of_norm_bounded_eventually_nat
eventually_norm_pow_le
isBigO_pow_pow_of_le_left πŸ“–mathematicalReal
Real.instLE
Real.instZero
Asymptotics.IsBigO
Real.norm
Filter.atTop
Nat.instPreorder
Monoid.toNatPow
Real.instMonoid
β€”LE.le.eq_or_lt
Asymptotics.isBigO_refl
Asymptotics.IsLittleO.isBigO
isLittleO_pow_pow_of_lt_left
isLittleO_coe_const_pow_of_one_lt πŸ“–mathematicalReal
Real.instLT
Real.instOne
Asymptotics.IsLittleO
NormedRing.toNorm
Real.norm
Filter.atTop
Nat.instPreorder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
Monoid.toNatPow
Real.instMonoid
β€”pow_one
isLittleO_pow_const_const_pow_of_one_lt
isLittleO_pow_const_const_pow_of_one_lt πŸ“–mathematicalReal
Real.instLT
Real.instOne
Asymptotics.IsLittleO
NormedRing.toNorm
Real.norm
Filter.atTop
Nat.instPreorder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instMonoid
β€”Filter.Tendsto.mono_left
Continuous.tendsto'
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id
one_pow
inf_le_left
Filter.Eventually.exists
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.Eventually.and
Filter.Tendsto.eventually
gt_mem_nhds
self_mem_nhdsWithin
LE.le.trans
zero_le_one
Real.instZeroLEOneClass
LT.lt.le
pow_mul
mul_comm
mul_right_comm
Nat.norm_cast_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_eq_inv_mul
Nat.cast_le_pow_div_sub
norm_nonneg
Asymptotics.IsBigO.pow
Asymptotics.isBigO_of_le'
Asymptotics.IsBigO.trans_isLittleO
isLittleO_pow_pow_of_lt_left
pow_nonneg
IsOrderedRing.toPosMulMono
isLittleO_pow_const_mul_const_pow_const_pow_of_norm_lt πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instMonoid
β€”Asymptotics.IsLittleO.congr'
Asymptotics.isLittleO_zero
Filter.mem_atTop_sets
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
zero_pow
MulZeroClass.mul_zero
Filter.EventuallyEq.rfl
isLittleO_pow_const_const_pow_of_one_lt
one_lt_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
Asymptotics.IsBigO.of_norm_eventuallyLE
eventually_norm_pow_le
div_pow
div_mul_cancelβ‚€
LT.lt.ne'
pow_pos
Real.instZeroLEOneClass
Asymptotics.IsLittleO.mul_isBigO
NormedDivisionRing.toNormMulClass
isLittleO_pow_pow_of_abs_lt_left πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Monoid.toNatPow
Real.instMonoid
β€”Asymptotics.IsLittleO.of_norm_right
Asymptotics.IsLittleO.of_norm_left
Asymptotics.IsLittleO.congr
isLittleO_pow_pow_of_lt_left
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
pow_abs
Real.instIsOrderedRing
isLittleO_pow_pow_of_lt_left πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Monoid.toNatPow
Real.instMonoid
β€”LE.le.trans_lt
Asymptotics.isLittleO_of_tendsto
LT.lt.ne'
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Filter.Tendsto.congr
div_pow
tendsto_pow_atTop_nhds_zero_of_lt_one
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LE.le.trans
LT.lt.le
div_lt_one
isUnit_one_sub_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
mul_neg_geom_series πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
β€”Summable.one_sub_mul_tsum_pow
NonUnitalSeminormedRing.toIsTopologicalRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable_geometric_of_norm_lt_one
norm_sub_le_of_geometric_bound_of_hasSum πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Monoid.toNatPow
Real.instMonoid
HasSum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
Finset.sum
Finset.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
β€”dist_eq_norm
dist_le_of_le_geometric_of_tendsto
dist_partial_sum_le_of_le_geometric
HasSum.tendsto_sum_nat
norm_sum_neg_one_pow_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Real.norm
Finset.sum
Real.instAddCommMonoid
Finset.range
Monoid.toNatPow
Real.instMonoid
Real.instNeg
Real.instOne
β€”neg_one_geom_sum
norm_zero
Real.instZeroLEOneClass
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
not_summable_of_ratio_norm_eventually_ge πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Frequently
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instZero
Filter.atTop
Nat.instPreorder
Filter.Eventually
Real.instLE
Real.instMul
Summable
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SummationFilter.unconditional
β€”Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.frequently_atTop
summable_nat_add_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
Summable.tendsto_atTop_zero
not_tendsto_atTop_of_tendsto_nhds
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.atTop_neBot
Filter.Tendsto.comp
tendsto_norm_zero
tendsto_atTop_of_geom_le
lt_of_le_of_ne
norm_nonneg
zero_add
not_summable_of_ratio_test_tendsto_gt_one πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
SeminormedAddCommGroup.toNorm
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Summable
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
SummationFilter.unconditional
β€”Filter.mp_mem
Filter.Tendsto.eventually_const_le
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.univ_mem'
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
div_zero
exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
not_summable_of_ratio_norm_eventually_ge
Filter.Eventually.frequently
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
lt_of_le_of_ne
norm_nonneg
summable_choose_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.choose
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
β€”HasSum.summable
hasSum_choose_mul_geometric_of_norm_lt_one'
summable_descFactorial_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.descFactorial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
β€”Nat.descFactorial_eq_factorial_mul_choose
Nat.cast_mul
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
summable_choose_mul_geometric_of_norm_lt_one
summable_geometric_iff_norm_lt_one πŸ“–mathematicalβ€”Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
SummationFilter.unconditional
Real
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
β€”Filter.Eventually.exists
Filter.cofinite_neBot
instInfiniteNat
Filter.Tendsto.eventually
Summable.tendsto_cofinite_zero
SeminormedAddCommGroup.toIsTopologicalAddGroup
Metric.ball_mem_nhds
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
lt_of_pow_lt_pow_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
zero_le_one
one_pow
dist_zero_right
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
summable_geometric_of_norm_lt_one
instHasSummableGeomSeries
summable_geometric_of_abs_lt_one πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instOne
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Monoid.toNatPow
Real.instMonoid
SummationFilter.unconditional
β€”summable_geometric_of_norm_lt_one
instHasSummableGeomSeries
summable_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SummationFilter.unconditional
β€”HasSummableGeomSeries.summable_geometric_of_norm_lt_one
summable_norm_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SummationFilter.unconditional
β€”pow_zero
one_mul
summable_norm_pow_mul_geometric_of_norm_lt_one
summable_norm_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Asymptotics.IsBigO
Real.norm
Filter.atTop
Nat.instPreorder
Real.instNatCast
Monoid.toNatPow
Nat.instMonoid
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
β€”exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
summable_of_isBigO_nat
Real.instCompleteSpace
summable_geometric_of_lt_one
LE.le.trans
norm_nonneg
LT.lt.le
norm_norm
Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.of_bound
Filter.mp_mem
eventually_norm_pow_le
Filter.univ_mem'
abs_norm
norm_mul
NormedDivisionRing.toNormMulClass
Nat.abs_cast
Real.instIsOrderedRing
norm_pow
NormedDivisionRing.to_normOneClass
norm_mul_le
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
Nat.norm_cast_le
mul_nonneg
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
le_of_eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Asymptotics.IsBigO.mul
Asymptotics.isBigO_refl
Nat.cast_pow
Asymptotics.IsLittleO.isBigO
isLittleO_pow_const_mul_const_pow_const_pow_of_norm_lt
summable_norm_pow_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SummationFilter.unconditional
β€”summable_norm_mul_geometric_of_norm_lt_one
Asymptotics.isBigO_refl
summable_of_ratio_norm_eventually_le πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Eventually
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
Filter.atTop
Nat.instPreorder
Summable
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SummationFilter.unconditional
β€”Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
summable_nat_add_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
Summable.of_norm_bounded
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_geometric_of_lt_one
mul_comm
zero_add
le_geom
Summable.of_norm_bounded_eventually_nat
summable_zero
Filter.mp_mem
Filter.univ_mem'
not_lt
norm_nonneg
lt_of_le_of_lt
mul_neg_of_neg_of_pos
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
summable_of_ratio_test_tendsto_lt_one πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Eventually
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Filter.atTop
Nat.instPreorder
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
β€”exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
summable_of_ratio_norm_eventually_le
Filter.mp_mem
Filter.Tendsto.eventually_le_const
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.univ_mem'
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_pos_iff
summable_pow_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SummationFilter.unconditional
β€”Nat.strong_induction_on
Polynomial.Monic.comp_X_add_C
monic_ascPochhammer
Nat.instNontrivial
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Polynomial.natDegree_comp
ascPochhammer_natDegree
Polynomial.natDegree_X_add_C
mul_one
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Polynomial.eval_comp
Polynomial.eval_add
Polynomial.eval_X
Polynomial.eval_one
ascPochhammer_nat_eq_descFactorial
Polynomial.Monic.as_sum
Finset.sum_congr
Polynomial.eval_pow
Polynomial.eval_finset_sum
Polynomial.eval_mul
Polynomial.eval_natCast
Summable.sub
SeminormedAddCommGroup.toIsTopologicalAddGroup
summable_descFactorial_mul_geometric_of_norm_lt_one
summable_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
mul_assoc
Summable.mul_left
Nat.cast_add
Nat.cast_pow
Nat.cast_sum
Nat.cast_mul
add_mul
Distrib.rightDistribClass
Finset.sum_mul
add_sub_cancel_right
summable_powerSeries_of_norm_lt πŸ“–mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
Nat.instPreorder
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Real
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Summable
SummationFilter.unconditional
β€”LE.le.trans_lt
norm_nonneg
exists_norm_le_of_cauchySeq
summable_iff_cauchySeq_finset
cauchySeq_finset_of_geometric_bound
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_mul
NormedDivisionRing.toNormMulClass
norm_pow
NormedDivisionRing.to_normOneClass
div_pow
mul_comm_div
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
pow_nonneg
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
summable_powerSeries_of_norm_lt_one πŸ“–mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
Nat.instPreorder
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Finset.range
Real
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
Summable
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
SummationFilter.unconditional
β€”summable_powerSeries_of_norm_lt
Finset.sum_congr
one_pow
mul_one
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
tendsto_const_div_pow πŸ“–mathematicalβ€”Filter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”Nat.cast_pow
Filter.Tendsto.const_div_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
Filter.Tendsto.comp
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
Filter.tendsto_pow_atTop
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
tendsto_intCast_atBot_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
Filter.atBot
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
β€”Filter.Tendsto.mono_left
tendsto_intCast_atBot_sup_atTop_cobounded
le_sup_left
tendsto_intCast_atBot_sup_atTop_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
Filter
Filter.instSup
Filter.atBot
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Filter.atTop
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
β€”tendsto_norm_atTop_iff_cobounded
norm_intCast_eq_abs_mul_norm_one
Int.cast_abs
Real.instIsStrictOrderedRing
Filter.Tendsto.atTop_mul_const
norm_pos_iff
one_ne_zero
NeZero.one
Filter.Tendsto.comp
tendsto_intCast_atTop_atTop
Real.instArchimedean
Filter.Tendsto.sup
Filter.tendsto_abs_atBot_atTop
Int.instIsOrderedAddMonoid
Filter.tendsto_abs_atTop_atTop
tendsto_intCast_atTop_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
NormedRing.toRing
Filter.atTop
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
β€”Filter.Tendsto.mono_left
tendsto_intCast_atBot_sup_atTop_cobounded
le_sup_right
tendsto_natCast_atTop_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
Filter.atTop
Nat.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
β€”tendsto_norm_atTop_iff_cobounded
norm_natCast_eq_mul_norm_one
Filter.Tendsto.atTop_mul_const
Real.instIsStrictOrderedRing
norm_pos_iff
one_ne_zero
NeZero.one
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
tendsto_pow_atTop_nhds_zero_iff_norm_lt_one πŸ“–mathematicalβ€”Filter.Tendsto
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Real
Real.instLT
Norm.norm
SeminormedRing.toNorm
Real.instOne
β€”abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_nonneg
tendsto_pow_atTop_nhds_zero_iff
Real.instIsStrictOrderedRing
Real.instArchimedean
instOrderTopologyReal
tendsto_zero_iff_norm_tendsto_zero
Filter.Tendsto.congr'
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Nat.le_induction
pow_one
pow_succ
norm_mul
tendsto_pow_atTop_nhds_zero_of_norm_lt_one
tendsto_pow_atTop_nhds_zero_of_abs_lt_one πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instOne
Filter.Tendsto
Monoid.toNatPow
Real.instMonoid
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”tendsto_pow_atTop_nhds_zero_of_norm_lt_one
tendsto_pow_atTop_nhds_zero_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
SeminormedRing.toNorm
Real.instOne
Filter.Tendsto
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”squeeze_zero_norm'
eventually_norm_pow_le
tendsto_pow_atTop_nhds_zero_of_lt_one
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
norm_nonneg
tendsto_pow_const_div_const_pow_of_one_lt πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”Asymptotics.IsLittleO.tendsto_div_nhds_zero
isLittleO_pow_const_const_pow_of_one_lt
tendsto_pow_const_mul_const_pow_of_abs_lt_one πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instOne
Filter.Tendsto
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”Filter.Tendsto.congr'
Filter.mem_atTop_sets
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
isReduced_of_noZeroDivisors
Real.instNontrivial
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
Nat.instZeroLEOneClass
tendsto_const_nhds
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
abs_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
tendsto_zero_iff_norm_tendsto_zero
norm_mul
norm_pow
NormedDivisionRing.to_normOneClass
Nat.abs_cast
Real.instIsOrderedRing
inv_pow
div_eq_mul_inv
inv_inv
tendsto_pow_const_div_const_pow_of_one_lt
tendsto_pow_const_mul_const_pow_of_lt_one πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Filter.Tendsto
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”tendsto_pow_const_mul_const_pow_of_abs_lt_one
abs_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.trans_le
neg_one_lt_zero
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
tendsto_self_mul_const_pow_of_abs_lt_one πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instOne
Filter.Tendsto
Real.instMul
Real.instNatCast
Monoid.toNatPow
Real.instMonoid
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”pow_one
tendsto_pow_const_mul_const_pow_of_abs_lt_one
tendsto_self_mul_const_pow_of_lt_one πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Filter.Tendsto
Real.instMul
Real.instNatCast
Monoid.toNatPow
Real.instMonoid
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”pow_one
tendsto_pow_const_mul_const_pow_of_lt_one
tendsto_smul_comp_nat_floor_of_tendsto_mul πŸ“–mathematicalFilter.Tendsto
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
Nat.floor
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
PartialOrder.toPreorder
β€”tendsto_smul_comp_nat_floor_of_tendsto_nsmul
IsStrictOrderedRing.isDomain
AddGroup.existsAddOfLE
nsmul_eq_mul
tendsto_smul_comp_nat_floor_of_tendsto_nsmul πŸ“–mathematicalFilter.Tendsto
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Filter.atTop
Nat.instPreorder
nhds
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
Nat.floor
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
PartialOrder.toPreorder
β€”Nat.cast_smul_eq_nsmul
tendsto_smul_congr_of_tendsto_left_cobounded_of_isBoundedUnder
Filter.Tendsto.comp
tendsto_nat_floor_atTop
tendsto_natCast_atTop_cobounded
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Filter.isBoundedUnder_of_eventually_le
Filter.Eventually.mono
abs_one
IsStrictOrderedRing.toIsOrderedRing
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
Nat.cast_one
Nat.abs_floor_sub_le
norm_le_norm_of_abs_le_abs
tendsto_smul_congr_of_tendsto_left_cobounded_of_isBoundedUnder πŸ“–β€”Filter.Tendsto
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
nhds
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
NormedRing.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
β€”β€”Filter.Tendsto.congr_dist
dist_eq_norm
norm_smul
Filter.isBoundedUnder_le_mul_tendsto_zero
norm_norm
tendsto_zero_iff_norm_tendsto_zero
tendsto_zero_of_isBoundedUnder_smul_of_tendsto_cobounded
Filter.Tendsto.isBoundedUnder_le
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.Tendsto.norm
tendsto_zero_of_isBoundedUnder_smul_of_tendsto_cobounded πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
Filter.Tendsto
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Filter.IsBoundedUnder.eventually_le
Filter.HasBasis.tendsto_right_iff
Metric.nhds_basis_closedBall
Filter.mp_mem
Filter.Tendsto.eventually_ne_cobounded
Filter.hasBasis_cobounded_norm
Filter.univ_mem'
eq_or_lt_of_le
LE.le.trans
norm_nonneg
smul_eq_zero_iff_right
IsDomain.toIsCancelMulZero
norm_le_zero_iff
dist_self
LT.lt.le
dist_zero_right
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
norm_smul
div_le_divβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
le_refl
div_pos
div_div_cancelβ‚€
LT.lt.ne'
tsum_choose_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.choose
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
SummationFilter.unconditional
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_choose_mul_geometric_of_norm_lt_one
tsum_choose_mul_geometric_of_norm_lt_one' πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.choose
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
Ring.inverse
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
β€”HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_choose_mul_geometric_of_norm_lt_one'
tsum_coe_mul_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
SummationFilter.unconditional
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
β€”HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_coe_mul_geometric_of_norm_lt_one
tsum_coe_mul_geometric_of_norm_lt_one' πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
SummationFilter.unconditional
Ring.inverse
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
β€”HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_coe_mul_geometric_of_norm_lt_one'
instHasSummableGeomSeries
tsum_geometric_le_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Real.instLE
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SummationFilter.unconditional
Real.instAdd
Real.instSub
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instInv
β€”Summable.tsum_eq_zero_add
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
pow_zero
le_trans
norm_add_le
tsum_of_norm_bounded
Finset.sum_singleton
hasSum_nat_add_iff'
instIsTopologicalAddGroupReal
hasSum_geometric_of_lt_one
norm_nonneg
norm_pow_le'
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
CancelDenoms.add_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
tsum_eq_zero_of_not_summable
norm_zero
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
norm_of_subsingleton
zero_sub
sub_zero
inv_one
neg_add_cancel
one_le_norm_one
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_nonpos
tsum_geometric_of_abs_lt_one πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instOne
tsum
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Monoid.toNatPow
Real.instMonoid
SummationFilter.unconditional
Real.instInv
Real.instSub
β€”tsum_geometric_of_norm_lt_one
tsum_geometric_of_norm_lt_one πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedDivisionRing.toNorm
Real.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
SummationFilter.unconditional
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_geometric_of_norm_lt_one

---

← Back to Index