toPreadditive 📖 | CompOp | 643 mathmath: CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d, CategoryTheory.InjectiveResolution.Hom.hom'_f, CategoryTheory.ShortComplex.SnakeInput.exact_C₃_up, DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, CategoryTheory.ShortComplex.SnakeInput.epi_L₃_g, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, CategoryTheory.ShortComplex.SnakeInput.L₀'_exact, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, CategoryTheory.ObjectProperty.isoModSerre_zero_iff, CategoryTheory.ShortComplex.SnakeInput.w₀₂_assoc, CategoryTheory.kernelUnopOp_inv, FunctorCategory.coimageImageComparison_app', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₁, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₁, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, CategoryTheory.ShortComplex.SnakeInput.op_δ, DerivedCategory.right_fac, CategoryTheory.ShortComplex.SnakeInput.comp_f₃_assoc, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_id, CategoryTheory.ShortComplex.SnakeInput.naturality_δ, CategoryTheory.ShortComplex.SnakeInput.functorL₁_obj, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_K, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₂₃, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, CategoryTheory.ShortComplex.SnakeInput.L₃_exact, Pseudoelement.pseudoZero_def, CategoryTheory.ShortComplex.SnakeInput.mono_v₀₁_τ₂, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₂, CategoryTheory.ShortComplex.cokernelSequence_f, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, CategoryTheory.ShortComplex.SnakeInput.exact_C₁_up, CategoryTheory.ShortComplex.SnakeInput.L₁_exact, LeftResolution.chainComplexMap_zero, CategoryTheory.ShortComplex.instIsNormalEpiCategory, Ext.mk₀_addEquiv₀_apply, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₃, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π_assoc, AlgebraicGeometry.Scheme.Modules.instAdditivePullback, CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_g, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₁, CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π, CategoryTheory.kernelCokernelCompSequence.inl_π_assoc, HomologicalComplex.eq_liftCycles_homologyπ_up_to_refinements, CategoryTheory.ShortComplex.SnakeInput.mono_v₀₁_τ₃, groupCohomology.mapShortComplex₃_exact, HomologicalComplex.instIsNormalEpiCategory, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₃, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel', CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, AlgebraicGeometry.Scheme.Modules.Hom.zero_app, AlgebraicGeometry.tilde.map_sub, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.kernelOpUnop_hom, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₁, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.InjectiveResolution.instIsLECochainComplexOfNatInt, CochainComplex.cm5b.fac, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃_assoc, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.SnakeInput.op_L₂, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃, CochainComplex.IsKInjective.rightOrthogonal, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_pullback_snd, CategoryTheory.ShortComplex.SnakeInput.op_v₁₂, CategoryTheory.ShortComplex.SnakeInput.id_f₂, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, HomotopyCategory.instIsHomologicalIntUpHomologyFunctor, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, DerivedCategory.HomologySequence.exact₂, CategoryTheory.IsPullback.exact_shortComplex', coim_map, Ext.mk₀_neg, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂, CategoryTheory.instIsIsoToRightDerivedZero', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_g, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, tfae_epi, CategoryTheory.ShortComplex.SnakeInput.comp_f₀, CategoryTheory.cokernelOpOp_hom, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.full, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, Pseudoelement.zero_eq_zero', CategoryTheory.ShortComplex.SnakeInput.exact_C₂_down, CategoryTheory.ShortComplex.SnakeInput.instEpiGL₀', AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, AlgebraicGeometry.instAdditiveModuleCatCarrierModulesSpecOfFunctor, LeftResolution.exactAt_map_chainComplex_succ, CategoryTheory.ShortComplex.kernelSequence_exact, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₃, postcomp_extClass_surjective_of_projective_X₂, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, LeftResolution.map_chainComplex_d, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.ProjectiveResolution.instProjectiveXNatOfComplex, CochainComplex.mappingCone.inr_descShortComplex_assoc, CategoryTheory.ShortComplex.SnakeInput.δ_L₃_f, Pseudoelement.pseudoZero_iff, HomologicalComplex.instEpiGShortComplexTruncLE, CategoryTheory.kernelCokernelCompSequence.inr_π_assoc, FunctorCategory.coimageImageComparison_app, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.kernelCokernelCompSequence.ι_fst_assoc, im_map, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CategoryTheory.InjectivePresentation.shortExact_shortComplex, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, toIsNormalEpiCategory, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₁₂, CategoryTheory.ShortComplex.SnakeInput.L₂'_g, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₁_assoc, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, HomologicalComplex.quasiIso_iff_evaluation, subobjectIsoSubobjectOp_apply, CategoryTheory.ShortComplex.SnakeInput.functorL₀_map, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel, CategoryTheory.kernelUnopUnop_inv, CochainComplex.isKInjective_shift_iff, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, Ext.mk₀_smul, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_i, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp_assoc, CategoryTheory.kernelCokernelCompSequence.ι_fst, CategoryTheory.ShortComplex.cokernelSequence_g, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, CategoryTheory.kernelOpUnop_inv, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, DerivedCategory.right_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_obj, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_f, CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective, CategoryTheory.ShortComplex.SnakeInput.mono_L₀_f, CategoryTheory.ShortComplex.SnakeInput.L₁'_f, DerivedCategory.instLinearCochainComplexIntQ, LeftResolution.chainComplexMap_f_1, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₂, CategoryTheory.InjectiveResolution.extMk_zero, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂_assoc, CategoryTheory.ShortComplex.exact_cokernel, CategoryTheory.cokernelUnopOp_hom, groupHomology.mapShortComplex₃_exact, CategoryTheory.Functor.IsHomological.toPreservesZeroMorphisms, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, CategoryTheory.kernelCokernelCompSequence.φ_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₂₃_assoc, HomologicalComplex.instMonoFShortComplexTruncLE, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_Q, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.ObjectProperty.monoModSerre_zero_iff, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.exists_d_comp_eq_d, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, Pseudoelement.zero_morphism_ext, CategoryTheory.ShortComplex.SnakeInput.snd_δ, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, CategoryTheory.ProjectiveResolution.instIsKProjectiveCochainComplex, CategoryTheory.ProjectiveResolution.Hom.hom'_f_assoc, full_comp_preadditiveCoyonedaObj, CategoryTheory.ShortComplex.SnakeInput.composableArrowsFunctor_map, DerivedCategory.instIsIsoMapCochainComplexIntQ, HomologicalComplex.isIso_homologyMap_shortComplexTruncLE_g, precomp_extClass_surjective_of_projective_X₂, CategoryTheory.simple_of_cosimple, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CategoryTheory.ShortComplex.SnakeInput.L₁_f_φ₁_assoc, DerivedCategory.HomologySequence.comp_δ_assoc, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, CategoryTheory.ShortComplex.SnakeInput.φ₁_L₂_f_assoc, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, mono_cokernel_map_of_isPullback, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesInjectiveObjects, epi_kernel_map_of_isPushout, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₃, CategoryTheory.ShortComplex.kernelSequence_X₁, CategoryTheory.ShortComplex.SnakeInput.L₂'_X₃, CategoryTheory.ShortComplex.SnakeInput.functorL₀_obj, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π, CategoryTheory.ShortComplex.SnakeInput.L₀_exact, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, CategoryTheory.instHasInjectiveDimensionLTBiprod, CochainComplex.instIsKInjectiveObjIntShiftFunctor, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.Functor.homologySequenceδ_comp_assoc, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁_assoc, CategoryTheory.ProjectiveResolution.of_def, CategoryTheory.ShortComplex.instIsNormalMonoCategory, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₁₂_assoc, CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst_assoc, Ext.mk₀_add, AlgebraicTopology.inclusionOfMooreComplex_app, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, CategoryTheory.kernelCokernelCompSequence.ι_snd, CategoryTheory.ShortComplex.SnakeInput.L₁'_g, DerivedCategory.left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp_assoc, imageIsoImage_inv, CategoryTheory.ShortComplex.SnakeInput.epi_v₂₃_τ₂, CategoryTheory.ShortComplex.SnakeInput.op_L₀, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π', CategoryTheory.ShortComplex.SnakeInput.functorL₂_obj, CategoryTheory.Functor.preservesFiniteColimits_iff_forall_exact_map_and_epi, CategoryTheory.kernelUnopOp_hom, CategoryTheory.ObjectProperty.epiModSerre_zero_iff, CategoryTheory.ProjectiveResolution.Hom.hom'_f, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₂, CategoryTheory.preservesFiniteColimits_preadditiveYonedaObj_of_injective, CategoryTheory.ShortComplex.SnakeInput.L₁'_X₂, CategoryTheory.kernelCokernelCompSequence.ι_snd_assoc, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', CategoryTheory.ShortComplex.exact_kernel, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, CategoryTheory.InjectiveResolution.instHasInjectiveResolution, instAdditiveAddCommGrpCatExtFunctorObj, CategoryTheory.cokernel.π_op, HomologicalComplex.g_shortComplexTruncLEX₃ToTruncGE, CategoryTheory.ShortComplex.SnakeInput.L₂'_X₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_g, CategoryTheory.ShortComplex.SnakeInput.functorL₁_map, CategoryTheory.instIsIsoIndCoimageImageComparison, DerivedCategory.instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, CategoryTheory.kernelCokernelCompSequence.inl_φ, CategoryTheory.kernelCokernelCompSequence.inr_π, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.Functor.homologySequenceComposableArrows₅_exact, CategoryTheory.cokernelOpUnop_inv, HomologicalComplex.mono_homologyMap_shortComplexTruncLE_g, CategoryTheory.ShortComplex.kernelSequence_f, CategoryTheory.ShortComplex.SnakeInput.comp_f₂, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CategoryTheory.ProjectiveResolution.instIsGECochainComplexOfNatInt, CategoryTheory.kernel.ι_unop, CategoryTheory.kernelCokernelCompSequence_exact, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CategoryTheory.ShortComplex.SnakeInput.w₁₃_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π'_assoc, CategoryTheory.ShortComplex.SnakeInput.functorP_map, CategoryTheory.preservesFiniteColimits_preadditiveCoyonedaObj_of_projective, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₂, DerivedCategory.isLE_Q_obj_iff, factorThruImage_comp_coimageIsoImage'_inv, CochainComplex.cm5b.fac_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₃, AlgebraicTopology.normalizedMooreComplex_objD, CategoryTheory.ShortComplex.SnakeInput.exact_C₂_up, CategoryTheory.ObjectProperty.monoModSerre_iff, CategoryTheory.ProjectiveResolution.lift_commutes_zero, HomologicalComplex.quasiIsoAt_shortComplexTruncLE_g, coim_obj, CategoryTheory.kernelCokernelCompSequence.instEpiπ, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₃, CategoryTheory.ShortComplex.SnakeInput.L₀_g_δ, CategoryTheory.Functor.homologySequence_exact₃, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Ext.mk₀_sum, CategoryTheory.ShortComplex.SnakeInput.snd_δ_assoc, AlgebraicTopology.normalizedMooreComplex_map, CategoryTheory.ProjectiveResolution.lift_commutes, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CategoryTheory.ObjectProperty.epiModSerre_iff, HomologicalComplex.shortComplexTruncLE_f, CochainComplex.instIsKProjectiveObjIntShiftFunctor, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π_assoc, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, HomologicalComplex.isGrothendieckAbelian, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁_assoc, CategoryTheory.ShortComplex.SnakeInput.w₀₂, Pseudoelement.zero_morphism_ext', Ext.biprodAddEquiv_apply_fst, CategoryTheory.ShortComplex.SnakeInput.L₁_f_φ₁, CategoryTheory.ShortComplex.SnakeInput.functorL₃_obj, CochainComplex.IsKProjective.Qh_map_bijective, DerivedCategory.isGE_Q_obj_iff, DerivedCategory.instEssSurjHomotopyCategoryIntUpQh, CategoryTheory.ShortComplex.SnakeInput.comp_f₀_assoc, CategoryTheory.InjectiveResolution.desc_commutes, hasBinaryBiproducts, CategoryTheory.ShortComplex.SnakeInput.naturality_δ_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_p, HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic, CategoryTheory.ShortComplex.SnakeInput.L₁'_exact, CategoryTheory.InjectiveResolution.desc_commutes_assoc, CategoryTheory.ShortComplex.SnakeInput.id_f₁, CategoryTheory.ShortComplex.SnakeInput.L₁'_X₁, CategoryTheory.ShortComplex.SnakeInput.snake_lemma, DerivedCategory.instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.SnakeInput.op_L₃, AlgebraicTopology.NormalizedMooreComplex.d_squared, CategoryTheory.ShortComplex.SnakeInput.φ₁_L₂_f, DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE, CategoryTheory.ShortComplex.exact_iff_exact_up_to_refinements, Ext.mk₀_zero, CochainComplex.cm5b.instIsStrictlyGEI, CategoryTheory.ShortComplex.SnakeInput.functorL₃_map, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, CochainComplex.cm5b.instMonoFIntI, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁_assoc, CategoryTheory.Functor.instAdditiveOfIsHomological, CategoryTheory.ShortComplex.SnakeInput.L₁'_X₃, CategoryTheory.InjectiveResolution.instHasInjectiveResolutions, CategoryTheory.ShortComplex.SnakeInput.id_f₀, CategoryTheory.ProjectiveResolution.extMk_zero, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, CategoryTheory.ShortComplex.SnakeInput.epi_v₂₃_τ₃, AlgebraicGeometry.Scheme.Modules.Hom.sub_app, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE, instAdditiveOppositeFunctorAddCommGrpCatExtFunctor, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, CategoryTheory.ShortComplex.SnakeInput.op_v₂₃, DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₀, CategoryTheory.InjectiveResolution.Hom.ι'_comp_hom'_assoc, CategoryTheory.ShortComplex.SnakeInput.comp_f₁_assoc, CategoryTheory.ShortComplex.SnakeInput.op_v₀₁, im_obj, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₂, AlgebraicTopology.NormalizedMooreComplex.map_f, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.kernelCokernelCompSequence.δ_fac, DerivedCategory.HomologySequence.exact₁, CategoryTheory.Functor.preservesFiniteLimits_iff_forall_exact_map_and_mono, CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective, HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, CategoryTheory.InjectiveResolution.Hom.hom'_f_assoc, DoldKan.equivalence_inverse, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂_assoc, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, HomologicalComplex.shortComplexTruncLE_shortExact, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, CochainComplex.IsKProjective.leftOrthogonal, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.ProjectiveResolution.lift_commutes_assoc, DerivedCategory.exists_iso_Q_obj_of_isGE, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₁, CochainComplex.cm5b.instInjectiveXIntI, CochainComplex.cm5b.instMonoIntI, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, AlgebraicGeometry.Scheme.Modules.Hom.add_app, groupCohomology.mapShortComplex₁_exact, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, HomologicalComplex.shortComplexTruncLE_X₂, CategoryTheory.ShortComplex.cokernelSequence_exact, CategoryTheory.instHasProjectiveDimensionLTBiprod, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_g, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplex.quasiIsoAt_iff_evaluation, CategoryTheory.presheafToSheaf_additive, CategoryTheory.Functor.map_distinguished_exact, CategoryTheory.ShortComplex.SnakeInput.comp_f₃, CategoryTheory.cokernelUnopUnop_hom, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CochainComplex.shortComplexTruncLE_shortExact, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CochainComplex.cm5b.i_f_comp, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, CategoryTheory.ShortComplex.SnakeInput.L₂'_exact, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι, Pseudoelement.zero_eq_zero, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel, CategoryTheory.ShortComplex.SnakeInput.mono_v₀₁_τ₁, CategoryTheory.ShortComplex.eq_liftCycles_homologyπ_up_to_refinements, groupHomology.mapShortComplex₁_exact, CategoryTheory.Functor.homologySequence_exact₁, imageIsoImage_hom_comp_image_ι, CategoryTheory.ShortComplex.exact_iff_image_eq_kernel, HomotopyCategory.mem_subcategoryAcyclic_iff, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₀₁, CategoryTheory.InjectiveResolution.instIsKInjectiveCochainComplex, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_f, CategoryTheory.ShortComplex.SnakeInput.id_f₃, CategoryTheory.epi_from_simple_zero_of_not_iso, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_obj, DerivedCategory.right_fac_of_isStrictlyLE, coimage.comp_π_eq_zero, Ext.smul_eq_comp_mk₀, AlgebraicGeometry.tilde.map_add, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, CategoryTheory.ProjectiveResolution.instHasProjectiveResolutions, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, Pseudoelement.pseudoZero_aux, Ext.addEquiv₀_symm_apply, CategoryTheory.ShortComplex.SnakeInput.mono_L₂_f, has_cokernels, AlgebraicTopology.NormalizedMooreComplex.obj_X, coimageIsoImage'_hom, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₃, AlgebraicTopology.NormalizedMooreComplex.objX_add_one, ChainComplex.linearYonedaObj_d, CategoryTheory.categoryWithHomology_of_abelian, HomologicalComplex.epi_homologyMap_shortComplexTruncLE_g, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.ShortComplex.cokernelSequence_X₁, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, CategoryTheory.ShortComplex.quasiIso_iff_evaluation, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp, Ext.mk₀_eq_zero_iff, CategoryTheory.InjectiveResolution.instQuasiIsoIntι', CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.SnakeInput.comp_f₂_assoc, preadditiveCoyonedaObj_map_surjective, CategoryTheory.kernelCokernelCompSequence.φ_π, CategoryTheory.InjectiveResolution.desc_commutes_zero, FunctorCategory.coimageObjIso_inv, image.ι_comp_eq_zero, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₂, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, CochainComplex.cm5b.i_f_comp_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.ShortComplex.cokernelSequence_X₃, CategoryTheory.ShortComplex.SnakeInput.L₂'_X₂, DoldKan.equivalence_functor, CochainComplex.mappingCone.inr_descShortComplex, DerivedCategory.instAdditiveCochainComplexIntQ, CochainComplex.cm5b.I_d, CategoryTheory.ProjectiveResolution.exact₀, DerivedCategory.instAdditiveSingleFunctor, AlgebraicGeometry.tilde.map_zero, CategoryTheory.IsPushout.exact_shortComplex, CategoryTheory.ShortComplex.SnakeInput.op_L₁, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_pullback_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.exact_C₃_down, DerivedCategory.Qh_obj_singleFunctors_obj, FunctorCategory.imageObjIso_hom, CategoryTheory.Functor.IsHomological.exact, Ext.mk₀_linearEquiv₀_apply, CategoryTheory.IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, CochainComplex.mappingCone.inl_v_descShortComplex_f, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₁, CategoryTheory.kernelOpOp_inv, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_f, CochainComplex.mappingCone.inr_f_descShortComplex_f, toIsNormalMonoCategory, CategoryTheory.IsPushout.hom_eq_add_up_to_refinements, CategoryTheory.ProjectiveResolution.instQuasiIsoIntπ', DerivedCategory.exists_iso_Q_obj_of_isLE, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, tfae_mono, HomologicalComplex.shortComplexTruncLE_X₁, Ext.addEquivBiprod_symm_apply, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, LeftResolution.map_chainComplex_d_1_0, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₁, DoldKan.comparisonN_hom_app_f, CategoryTheory.ShortComplex.SnakeInput.L₂'_f, CategoryTheory.kernelCokernelCompSequence.inl_φ_assoc, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₀₁_assoc, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesFiniteLimits, FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.ProjectiveResolution.liftFOne_zero_comm, CategoryTheory.ProjectiveResolution.instHasProjectiveResolution, DerivedCategory.instEssSurjCochainComplexIntQ, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, Ext.linearEquiv₀_symm_apply, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι_assoc, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₂, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₃, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, CategoryTheory.ObjectProperty.IsSerreClass.toIsClosedUnderExtensions, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃, DerivedCategory.instLinearSingleFunctor, CategoryTheory.InjectiveResolution.exact₀, LeftResolution.chainComplexMap_f_succ_succ, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₂_assoc, CategoryTheory.ShortComplex.SnakeInput.L₂_exact, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₂, CategoryTheory.cokernelUnopOp_inv, CategoryTheory.ShortComplex.kernelSequence_g, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁, CochainComplex.isKProjective_shift_iff, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₁, CategoryTheory.ShortComplex.SnakeInput.exact_C₁_down, HomologicalComplex.instQuasiIsoShortComplexTruncLEX₃ToTruncGE, CategoryTheory.kernelOpOp_hom, LeftResolution.map_chainComplex_d_1_0_assoc, DerivedCategory.instLinearHomotopyCategoryIntUpQh, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₂, Ext.addEquivBiprod_apply_snd, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CategoryTheory.ShortComplex.SnakeInput.epi_L₁_g, AlgebraicGeometry.tilde.map_neg, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι_assoc, CategoryTheory.ShortComplex.kernelSequence_X₃, Pseudoelement.eq_zero_iff, HomologicalComplex.shortExact_iff_degreewise_shortExact, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.ShortComplex.SnakeInput.comp_f₁, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, DerivedCategory.HomologySequence.δ_comp_assoc, CategoryTheory.kernelCokernelCompSequence.inl_π, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_id, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.InjectiveResolution.ofCocomplex_exactAt_succ, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₁, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d_assoc, DerivedCategory.mem_distTriang_iff, CategoryTheory.ShortComplex.cokernelSequence_X₂, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₃, CochainComplex.isKInjective_iff_rightOrthogonal, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, instIsIsoCoimageImageComparison, DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE, Ext.biprodAddEquiv_symm_apply, CategoryTheory.ProjectiveResolution.ofComplex_exactAt_succ, CategoryTheory.Functor.exact_tfae, DerivedCategory.HomologySequence.exact₃, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, DerivedCategory.Q_map_eq_of_homotopy, CategoryTheory.exact_f_d, CategoryTheory.exact_d_f, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, CategoryTheory.kernelCokernelCompSequence.φ_snd, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, FunctorCategory.coimageObjIso_hom, subobjectIsoSubobjectOp_symm_apply, hasFiniteBiproducts, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, DerivedCategory.isIso_Q_map_iff_quasiIso, DerivedCategory.isIso_Qh_map_iff, CategoryTheory.Functor.map_distinguished_op_exact, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, CategoryTheory.ShortComplex.instMonoFKernelSequence, CochainComplex.instIsMultiplicativeIntDegreewiseEpiWithInjectiveKernel, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel', DerivedCategory.left_fac_of_isStrictlyGE, CategoryTheory.Functor.homologySequenceδ_comp, HomologicalComplex.instIsNormalMonoCategory, HomologicalComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, Ext.addEquivBiprod_apply_fst, CategoryTheory.ShortComplex.SnakeInput.w₁₃, epiWithInjectiveKernel_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst, HomologicalComplex.shortComplexTruncLE_X₃_isSupportedOutside, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, CategoryTheory.InjectiveResolution.descFOne_zero_comm, DoldKan.comparisonN_inv_app_f, FunctorCategory.imageObjIso_inv, CategoryTheory.ShortComplex.SnakeInput.functorL₂_map, CategoryTheory.ShortComplex.SnakeInput.instMonoFL₀'OfL₁, Pseudoelement.zero_apply, CategoryTheory.ShortComplex.SnakeInput.epi_v₂₃_τ₁, CategoryTheory.ShortComplex.instEpiGCokernelSequence, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι_assoc, HomotopyCategory.instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.cokernel_zero_of_nonzero_to_simple, AlgebraicGeometry.Scheme.Modules.instAdditivePushforward, CochainComplex.cm5b, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₁, Ext.biprodAddEquiv_apply_snd, HomologicalComplex.exact_iff_degreewise_exact, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₀, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₂, CategoryTheory.InjectiveResolution.rightDerived_app_eq, CategoryTheory.kernelCokernelCompSequence.instMonoι, coimIsoIm_hom_app, CategoryTheory.InjectiveResolution.Hom.ι'_comp_hom', CategoryTheory.cokernelOpOp_inv, CategoryTheory.ShortComplex.kernelSequence_X₂, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, CategoryTheory.InjectiveResolution.instInjectiveXNatOfCocomplex, has_kernels, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, DerivedCategory.left_fac, AlgebraicTopology.normalizedMooreComplex_obj, CochainComplex.cm5b.I_X, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, coimIsoIm_inv_app, CategoryTheory.instIsIsoFromLeftDerivedZero', CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_f, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, ChainComplex.linearYonedaObj_X, DerivedCategory.instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
|