Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Abelian/Basic.lean

Statistics

MetricCount
DefinitionsbiproductToPushout, biproductToPushoutCofork, isColimitBiproductToPushout, imageFactorisation, imageMonoFactorisation, isLimitPullbackToBiproduct, pullbackToBiproduct, pullbackToBiproductFork, coim, coimIsoIm, coimageFunctor, coimageFunctorIsoImageFunctor, coimageIsoImage, coimageIsoImage', coimageStrongEpiMonoFactorisation, epiDesc, epiIsCokernelOfKernel, im, imageFunctor, imageIsoImage, imageStrongEpiMonoFactorisation, isColimitMapCoconeOfCokernelCoforkOfπ, isLimitMapConeOfKernelForkOfι, monoIsKernelOfCokernel, monoLift, nonPreadditiveAbelian, ofCoimageImageComparisonIsIso, toPreadditive, abelian
29
TheoremshasImages, imageMonoFactorisation_I, imageMonoFactorisation_e, imageMonoFactorisation_e', imageMonoFactorisation_m, instIsIsoEImageMonoFactorisationOfHasZeroObjectOfMonoOfCoimageImageComparison, instIsIsoMImageMonoFactorisationOfHasZeroObjectOfEpi, isNormalEpiCategory, isNormalMonoCategory, coimIsoIm_hom_app, coimIsoIm_inv_app, coim_map, coim_obj, comp_π_eq_zero, coimageIsoImage'_hom, coimageStrongEpiMonoFactorisation_I, coimageStrongEpiMonoFactorisation_e, coimageStrongEpiMonoFactorisation_m, comp_coimage_π_eq_zero, comp_epiDesc, comp_epiDesc_assoc, epi_fst_of_factor_thru_epi_mono_factorization, epi_fst_of_isLimit, epi_of_cokernel_π_eq_zero, epi_pullback_of_epi_f, epi_pullback_of_epi_g, epi_snd_of_isLimit, factorThruImage_comp_coimageIsoImage'_inv, hasBinaryBiproducts, hasCoequalizers, hasEqualizers, hasFiniteBiproducts, hasFiniteColimits, hasFiniteLimits, hasPullbacks, hasPushouts, hasZeroObject, has_cokernels, has_finite_products, has_kernels, im_map, im_obj, ι_comp_eq_zero, imageIsoImage_hom_comp_image_ι, imageIsoImage_inv, imageStrongEpiMonoFactorisation_I, imageStrongEpiMonoFactorisation_e, imageStrongEpiMonoFactorisation_m, image_ι_comp_eq_zero, instEpiFactorThruImage, instHasStrongEpiMonoFactorisations, instIsIsoCoimageImageComparison, instMonoFactorThruCoimage, isIso_factorThruCoimage, isIso_factorThruImage, monoLift_comp, monoLift_comp_assoc, mono_inl_of_factor_thru_epi_mono_factorization, mono_inl_of_isColimit, mono_inr_of_isColimit, mono_of_kernel_ι_eq_zero, mono_pushout_of_mono_f, mono_pushout_of_mono_g, toIsNormalEpiCategory, toIsNormalMonoCategory
65
Total94

CategoryTheory.Abelian

Definitions

NameCategoryTheorems
coim 📖CompOp
4 mathmath: coim_map, coim_obj, coimIsoIm_hom_app, coimIsoIm_inv_app
coimIsoIm 📖CompOp
2 mathmath: coimIsoIm_hom_app, coimIsoIm_inv_app
coimageFunctor 📖CompOp
coimageFunctorIsoImageFunctor 📖CompOp
coimageIsoImage 📖CompOp
coimageIsoImage' 📖CompOp
2 mathmath: factorThruImage_comp_coimageIsoImage'_inv, coimageIsoImage'_hom
coimageStrongEpiMonoFactorisation 📖CompOp
3 mathmath: coimageStrongEpiMonoFactorisation_e, coimageStrongEpiMonoFactorisation_I, coimageStrongEpiMonoFactorisation_m
epiDesc 📖CompOp
2 mathmath: comp_epiDesc, comp_epiDesc_assoc
epiIsCokernelOfKernel 📖CompOp
im 📖CompOp
4 mathmath: im_map, im_obj, coimIsoIm_hom_app, coimIsoIm_inv_app
imageFunctor 📖CompOp
imageIsoImage 📖CompOp
2 mathmath: imageIsoImage_inv, imageIsoImage_hom_comp_image_ι
imageStrongEpiMonoFactorisation 📖CompOp
3 mathmath: imageStrongEpiMonoFactorisation_e, imageStrongEpiMonoFactorisation_m, imageStrongEpiMonoFactorisation_I
isColimitMapCoconeOfCokernelCoforkOfπ 📖CompOp
isLimitMapConeOfKernelForkOfι 📖CompOp
monoIsKernelOfCokernel 📖CompOp
monoLift 📖CompOp
2 mathmath: monoLift_comp, monoLift_comp_assoc
nonPreadditiveAbelian 📖CompOp
10 mathmath: imageStrongEpiMonoFactorisation_e, instEpiFactorThruImage, coimageStrongEpiMonoFactorisation_e, instMonoFactorThruCoimage, coimageStrongEpiMonoFactorisation_I, imageStrongEpiMonoFactorisation_m, imageStrongEpiMonoFactorisation_I, isIso_factorThruImage, isIso_factorThruCoimage, coimageStrongEpiMonoFactorisation_m
ofCoimageImageComparisonIsIso 📖CompOp
toPreadditive 📖CompOp
643 mathmath: CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d, CategoryTheory.InjectiveResolution.Hom.hom'_f, CategoryTheory.ShortComplex.SnakeInput.exact_C₃_up, DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, CategoryTheory.ShortComplex.SnakeInput.epi_L₃_g, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, CategoryTheory.ShortComplex.SnakeInput.L₀'_exact, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, CategoryTheory.ObjectProperty.isoModSerre_zero_iff, CategoryTheory.ShortComplex.SnakeInput.w₀₂_assoc, CategoryTheory.kernelUnopOp_inv, FunctorCategory.coimageImageComparison_app', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₁, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₁, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, CategoryTheory.ShortComplex.SnakeInput.op_δ, DerivedCategory.right_fac, CategoryTheory.ShortComplex.SnakeInput.comp_f₃_assoc, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_id, CategoryTheory.ShortComplex.SnakeInput.naturality_δ, CategoryTheory.ShortComplex.SnakeInput.functorL₁_obj, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_K, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₂₃, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, CategoryTheory.ShortComplex.SnakeInput.L₃_exact, Pseudoelement.pseudoZero_def, CategoryTheory.ShortComplex.SnakeInput.mono_v₀₁_τ₂, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₂, CategoryTheory.ShortComplex.cokernelSequence_f, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, CategoryTheory.ShortComplex.SnakeInput.exact_C₁_up, CategoryTheory.ShortComplex.SnakeInput.L₁_exact, LeftResolution.chainComplexMap_zero, CategoryTheory.ShortComplex.instIsNormalEpiCategory, Ext.mk₀_addEquiv₀_apply, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₃, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π_assoc, AlgebraicGeometry.Scheme.Modules.instAdditivePullback, CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_g, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₁, CategoryTheory.ShortComplex.ext_mk₀_f_comp_ext_mk₀_g, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π, CategoryTheory.kernelCokernelCompSequence.inl_π_assoc, HomologicalComplex.eq_liftCycles_homologyπ_up_to_refinements, CategoryTheory.ShortComplex.SnakeInput.mono_v₀₁_τ₃, groupCohomology.mapShortComplex₃_exact, HomologicalComplex.instIsNormalEpiCategory, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₃, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel', CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, AlgebraicGeometry.Scheme.Modules.Hom.zero_app, AlgebraicGeometry.tilde.map_sub, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.kernelOpUnop_hom, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₁, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.InjectiveResolution.instIsLECochainComplexOfNatInt, CochainComplex.cm5b.fac, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃_assoc, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.SnakeInput.op_L₂, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃, CochainComplex.IsKInjective.rightOrthogonal, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_pullback_snd, CategoryTheory.ShortComplex.SnakeInput.op_v₁₂, CategoryTheory.ShortComplex.SnakeInput.id_f₂, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, HomotopyCategory.instIsHomologicalIntUpHomologyFunctor, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, DerivedCategory.HomologySequence.exact₂, CategoryTheory.IsPullback.exact_shortComplex', coim_map, Ext.mk₀_neg, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂, CategoryTheory.instIsIsoToRightDerivedZero', CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_g, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, tfae_epi, CategoryTheory.ShortComplex.SnakeInput.comp_f₀, CategoryTheory.cokernelOpOp_hom, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.full, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, Pseudoelement.zero_eq_zero', CategoryTheory.ShortComplex.SnakeInput.exact_C₂_down, CategoryTheory.ShortComplex.SnakeInput.instEpiGL₀', AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, AlgebraicGeometry.instAdditiveModuleCatCarrierModulesSpecOfFunctor, LeftResolution.exactAt_map_chainComplex_succ, CategoryTheory.ShortComplex.kernelSequence_exact, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₃, postcomp_extClass_surjective_of_projective_X₂, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, LeftResolution.map_chainComplex_d, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.ProjectiveResolution.instProjectiveXNatOfComplex, CochainComplex.mappingCone.inr_descShortComplex_assoc, CategoryTheory.ShortComplex.SnakeInput.δ_L₃_f, Pseudoelement.pseudoZero_iff, HomologicalComplex.instEpiGShortComplexTruncLE, CategoryTheory.kernelCokernelCompSequence.inr_π_assoc, FunctorCategory.coimageImageComparison_app, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.kernelCokernelCompSequence.ι_fst_assoc, im_map, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CategoryTheory.InjectivePresentation.shortExact_shortComplex, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, toIsNormalEpiCategory, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₁₂, CategoryTheory.ShortComplex.SnakeInput.L₂'_g, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₁_assoc, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, HomologicalComplex.quasiIso_iff_evaluation, subobjectIsoSubobjectOp_apply, CategoryTheory.ShortComplex.SnakeInput.functorL₀_map, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel, CategoryTheory.kernelUnopUnop_inv, CochainComplex.isKInjective_shift_iff, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, Ext.mk₀_smul, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_i, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp_assoc, CategoryTheory.kernelCokernelCompSequence.ι_fst, CategoryTheory.ShortComplex.cokernelSequence_g, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, CategoryTheory.kernelOpUnop_inv, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, DerivedCategory.right_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_obj, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_f, CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective, CategoryTheory.ShortComplex.SnakeInput.mono_L₀_f, CategoryTheory.ShortComplex.SnakeInput.L₁'_f, DerivedCategory.instLinearCochainComplexIntQ, LeftResolution.chainComplexMap_f_1, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₂, CategoryTheory.InjectiveResolution.extMk_zero, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂_assoc, CategoryTheory.ShortComplex.exact_cokernel, CategoryTheory.cokernelUnopOp_hom, groupHomology.mapShortComplex₃_exact, CategoryTheory.Functor.IsHomological.toPreservesZeroMorphisms, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, CategoryTheory.kernelCokernelCompSequence.φ_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₂₃_assoc, HomologicalComplex.instMonoFShortComplexTruncLE, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_Q, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.ObjectProperty.monoModSerre_zero_iff, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.exists_d_comp_eq_d, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, Pseudoelement.zero_morphism_ext, CategoryTheory.ShortComplex.SnakeInput.snd_δ, CategoryTheory.ShortComplex.SnakeInput.snd_δ_inr, CategoryTheory.ProjectiveResolution.instIsKProjectiveCochainComplex, CategoryTheory.ProjectiveResolution.Hom.hom'_f_assoc, full_comp_preadditiveCoyonedaObj, CategoryTheory.ShortComplex.SnakeInput.composableArrowsFunctor_map, DerivedCategory.instIsIsoMapCochainComplexIntQ, HomologicalComplex.isIso_homologyMap_shortComplexTruncLE_g, precomp_extClass_surjective_of_projective_X₂, CategoryTheory.simple_of_cosimple, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CategoryTheory.ShortComplex.SnakeInput.L₁_f_φ₁_assoc, DerivedCategory.HomologySequence.comp_δ_assoc, CategoryTheory.cokernel.π_unop, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, CategoryTheory.ShortComplex.SnakeInput.φ₁_L₂_f_assoc, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, mono_cokernel_map_of_isPullback, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesInjectiveObjects, epi_kernel_map_of_isPushout, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₃, CategoryTheory.ShortComplex.kernelSequence_X₁, CategoryTheory.ShortComplex.SnakeInput.L₂'_X₃, CategoryTheory.ShortComplex.SnakeInput.functorL₀_obj, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π, CategoryTheory.ShortComplex.SnakeInput.L₀_exact, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, CategoryTheory.instHasInjectiveDimensionLTBiprod, CochainComplex.instIsKInjectiveObjIntShiftFunctor, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CategoryTheory.Functor.homologySequenceδ_comp_assoc, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁_assoc, CategoryTheory.ProjectiveResolution.of_def, CategoryTheory.ShortComplex.instIsNormalMonoCategory, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₁₂_assoc, CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst_assoc, Ext.mk₀_add, AlgebraicTopology.inclusionOfMooreComplex_app, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, CategoryTheory.kernelCokernelCompSequence.ι_snd, CategoryTheory.ShortComplex.SnakeInput.L₁'_g, DerivedCategory.left_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp_assoc, imageIsoImage_inv, CategoryTheory.ShortComplex.SnakeInput.epi_v₂₃_τ₂, CategoryTheory.ShortComplex.SnakeInput.op_L₀, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π', CategoryTheory.ShortComplex.SnakeInput.functorL₂_obj, CategoryTheory.Functor.preservesFiniteColimits_iff_forall_exact_map_and_epi, CategoryTheory.kernelUnopOp_hom, CategoryTheory.ObjectProperty.epiModSerre_zero_iff, CategoryTheory.ProjectiveResolution.Hom.hom'_f, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₂, CategoryTheory.preservesFiniteColimits_preadditiveYonedaObj_of_injective, CategoryTheory.ShortComplex.SnakeInput.L₁'_X₂, CategoryTheory.kernelCokernelCompSequence.ι_snd_assoc, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', CategoryTheory.ShortComplex.exact_kernel, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, CategoryTheory.InjectiveResolution.instHasInjectiveResolution, instAdditiveAddCommGrpCatExtFunctorObj, CategoryTheory.cokernel.π_op, HomologicalComplex.g_shortComplexTruncLEX₃ToTruncGE, CategoryTheory.ShortComplex.SnakeInput.L₂'_X₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_g, CategoryTheory.ShortComplex.SnakeInput.functorL₁_map, CategoryTheory.instIsIsoIndCoimageImageComparison, DerivedCategory.instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, CategoryTheory.kernelCokernelCompSequence.inl_φ, CategoryTheory.kernelCokernelCompSequence.inr_π, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.Functor.homologySequenceComposableArrows₅_exact, CategoryTheory.cokernelOpUnop_inv, HomologicalComplex.mono_homologyMap_shortComplexTruncLE_g, CategoryTheory.ShortComplex.kernelSequence_f, CategoryTheory.ShortComplex.SnakeInput.comp_f₂, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CategoryTheory.ProjectiveResolution.instIsGECochainComplexOfNatInt, CategoryTheory.kernel.ι_unop, CategoryTheory.kernelCokernelCompSequence_exact, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CategoryTheory.ShortComplex.SnakeInput.w₁₃_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π'_assoc, CategoryTheory.ShortComplex.SnakeInput.functorP_map, CategoryTheory.preservesFiniteColimits_preadditiveCoyonedaObj_of_projective, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₂, DerivedCategory.isLE_Q_obj_iff, factorThruImage_comp_coimageIsoImage'_inv, CochainComplex.cm5b.fac_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₃, AlgebraicTopology.normalizedMooreComplex_objD, CategoryTheory.ShortComplex.SnakeInput.exact_C₂_up, CategoryTheory.ObjectProperty.monoModSerre_iff, CategoryTheory.ProjectiveResolution.lift_commutes_zero, HomologicalComplex.quasiIsoAt_shortComplexTruncLE_g, coim_obj, CategoryTheory.kernelCokernelCompSequence.instEpiπ, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₃, CategoryTheory.ShortComplex.SnakeInput.L₀_g_δ, CategoryTheory.Functor.homologySequence_exact₃, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Ext.mk₀_sum, CategoryTheory.ShortComplex.SnakeInput.snd_δ_assoc, AlgebraicTopology.normalizedMooreComplex_map, CategoryTheory.ProjectiveResolution.lift_commutes, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CategoryTheory.ObjectProperty.epiModSerre_iff, HomologicalComplex.shortComplexTruncLE_f, CochainComplex.instIsKProjectiveObjIntShiftFunctor, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π_assoc, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, HomologicalComplex.isGrothendieckAbelian, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁_assoc, CategoryTheory.ShortComplex.SnakeInput.w₀₂, Pseudoelement.zero_morphism_ext', Ext.biprodAddEquiv_apply_fst, CategoryTheory.ShortComplex.SnakeInput.L₁_f_φ₁, CategoryTheory.ShortComplex.SnakeInput.functorL₃_obj, CochainComplex.IsKProjective.Qh_map_bijective, DerivedCategory.isGE_Q_obj_iff, DerivedCategory.instEssSurjHomotopyCategoryIntUpQh, CategoryTheory.ShortComplex.SnakeInput.comp_f₀_assoc, CategoryTheory.InjectiveResolution.desc_commutes, hasBinaryBiproducts, CategoryTheory.ShortComplex.SnakeInput.naturality_δ_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_p, HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic, CategoryTheory.ShortComplex.SnakeInput.L₁'_exact, CategoryTheory.InjectiveResolution.desc_commutes_assoc, CategoryTheory.ShortComplex.SnakeInput.id_f₁, CategoryTheory.ShortComplex.SnakeInput.L₁'_X₁, CategoryTheory.ShortComplex.SnakeInput.snake_lemma, DerivedCategory.instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_ι, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.SnakeInput.op_L₃, AlgebraicTopology.NormalizedMooreComplex.d_squared, CategoryTheory.ShortComplex.SnakeInput.φ₁_L₂_f, DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE, CategoryTheory.ShortComplex.exact_iff_exact_up_to_refinements, Ext.mk₀_zero, CochainComplex.cm5b.instIsStrictlyGEI, CategoryTheory.ShortComplex.SnakeInput.functorL₃_map, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, CochainComplex.cm5b.instMonoFIntI, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁_assoc, CategoryTheory.Functor.instAdditiveOfIsHomological, CategoryTheory.ShortComplex.SnakeInput.L₁'_X₃, CategoryTheory.InjectiveResolution.instHasInjectiveResolutions, CategoryTheory.ShortComplex.SnakeInput.id_f₀, CategoryTheory.ProjectiveResolution.extMk_zero, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_π, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, CategoryTheory.ShortComplex.SnakeInput.epi_v₂₃_τ₃, AlgebraicGeometry.Scheme.Modules.Hom.sub_app, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE, instAdditiveOppositeFunctorAddCommGrpCatExtFunctor, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, CategoryTheory.ShortComplex.SnakeInput.op_v₂₃, DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₀, CategoryTheory.InjectiveResolution.Hom.ι'_comp_hom'_assoc, CategoryTheory.ShortComplex.SnakeInput.comp_f₁_assoc, CategoryTheory.ShortComplex.SnakeInput.op_v₀₁, im_obj, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₂, AlgebraicTopology.NormalizedMooreComplex.map_f, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.kernelCokernelCompSequence.δ_fac, DerivedCategory.HomologySequence.exact₁, CategoryTheory.Functor.preservesFiniteLimits_iff_forall_exact_map_and_mono, CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective, HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, CategoryTheory.InjectiveResolution.Hom.hom'_f_assoc, DoldKan.equivalence_inverse, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂_assoc, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, HomologicalComplex.shortComplexTruncLE_shortExact, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, CochainComplex.IsKProjective.leftOrthogonal, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.ProjectiveResolution.lift_commutes_assoc, DerivedCategory.exists_iso_Q_obj_of_isGE, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₁, CochainComplex.cm5b.instInjectiveXIntI, CochainComplex.cm5b.instMonoIntI, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, AlgebraicGeometry.Scheme.Modules.Hom.add_app, groupCohomology.mapShortComplex₁_exact, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, HomologicalComplex.shortComplexTruncLE_X₂, CategoryTheory.ShortComplex.cokernelSequence_exact, CategoryTheory.instHasProjectiveDimensionLTBiprod, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_g, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplex.quasiIsoAt_iff_evaluation, CategoryTheory.presheafToSheaf_additive, CategoryTheory.Functor.map_distinguished_exact, CategoryTheory.ShortComplex.SnakeInput.comp_f₃, CategoryTheory.cokernelUnopUnop_hom, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CochainComplex.shortComplexTruncLE_shortExact, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CochainComplex.cm5b.i_f_comp, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, CategoryTheory.ShortComplex.SnakeInput.L₂'_exact, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι, Pseudoelement.zero_eq_zero, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel, CategoryTheory.ShortComplex.SnakeInput.mono_v₀₁_τ₁, CategoryTheory.ShortComplex.eq_liftCycles_homologyπ_up_to_refinements, groupHomology.mapShortComplex₁_exact, CategoryTheory.Functor.homologySequence_exact₁, imageIsoImage_hom_comp_image_ι, CategoryTheory.ShortComplex.exact_iff_image_eq_kernel, HomotopyCategory.mem_subcategoryAcyclic_iff, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₀₁, CategoryTheory.InjectiveResolution.instIsKInjectiveCochainComplex, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_f, CategoryTheory.ShortComplex.SnakeInput.id_f₃, CategoryTheory.epi_from_simple_zero_of_not_iso, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_obj, DerivedCategory.right_fac_of_isStrictlyLE, coimage.comp_π_eq_zero, Ext.smul_eq_comp_mk₀, AlgebraicGeometry.tilde.map_add, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, CategoryTheory.ProjectiveResolution.instHasProjectiveResolutions, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, Pseudoelement.pseudoZero_aux, Ext.addEquiv₀_symm_apply, CategoryTheory.ShortComplex.SnakeInput.mono_L₂_f, has_cokernels, AlgebraicTopology.NormalizedMooreComplex.obj_X, coimageIsoImage'_hom, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₃, AlgebraicTopology.NormalizedMooreComplex.objX_add_one, ChainComplex.linearYonedaObj_d, CategoryTheory.categoryWithHomology_of_abelian, HomologicalComplex.epi_homologyMap_shortComplexTruncLE_g, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.ShortComplex.cokernelSequence_X₁, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, CategoryTheory.ShortComplex.quasiIso_iff_evaluation, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp, Ext.mk₀_eq_zero_iff, CategoryTheory.InjectiveResolution.instQuasiIsoIntι', CategoryTheory.kernel.ι_op, CategoryTheory.ShortComplex.SnakeInput.comp_f₂_assoc, preadditiveCoyonedaObj_map_surjective, CategoryTheory.kernelCokernelCompSequence.φ_π, CategoryTheory.InjectiveResolution.desc_commutes_zero, FunctorCategory.coimageObjIso_inv, image.ι_comp_eq_zero, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₂, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, CochainComplex.cm5b.i_f_comp_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.ShortComplex.cokernelSequence_X₃, CategoryTheory.ShortComplex.SnakeInput.L₂'_X₂, DoldKan.equivalence_functor, CochainComplex.mappingCone.inr_descShortComplex, DerivedCategory.instAdditiveCochainComplexIntQ, CochainComplex.cm5b.I_d, CategoryTheory.ProjectiveResolution.exact₀, DerivedCategory.instAdditiveSingleFunctor, AlgebraicGeometry.tilde.map_zero, CategoryTheory.IsPushout.exact_shortComplex, CategoryTheory.ShortComplex.SnakeInput.op_L₁, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_pullback_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.exact_C₃_down, DerivedCategory.Qh_obj_singleFunctors_obj, FunctorCategory.imageObjIso_hom, CategoryTheory.Functor.IsHomological.exact, Ext.mk₀_linearEquiv₀_apply, CategoryTheory.IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, CochainComplex.mappingCone.inl_v_descShortComplex_f, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₁, CategoryTheory.kernelOpOp_inv, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_f, CochainComplex.mappingCone.inr_f_descShortComplex_f, toIsNormalMonoCategory, CategoryTheory.IsPushout.hom_eq_add_up_to_refinements, CategoryTheory.ProjectiveResolution.instQuasiIsoIntπ', DerivedCategory.exists_iso_Q_obj_of_isLE, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, tfae_mono, HomologicalComplex.shortComplexTruncLE_X₁, Ext.addEquivBiprod_symm_apply, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, LeftResolution.map_chainComplex_d_1_0, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₁, DoldKan.comparisonN_hom_app_f, CategoryTheory.ShortComplex.SnakeInput.L₂'_f, CategoryTheory.kernelCokernelCompSequence.inl_φ_assoc, CategoryTheory.ShortComplex.SnakeInput.Hom.comm₀₁_assoc, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesFiniteLimits, FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.ProjectiveResolution.liftFOne_zero_comm, CategoryTheory.ProjectiveResolution.instHasProjectiveResolution, DerivedCategory.instEssSurjCochainComplexIntQ, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, Ext.linearEquiv₀_symm_apply, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι_assoc, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₂, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₃, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, CategoryTheory.ObjectProperty.IsSerreClass.toIsClosedUnderExtensions, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃, DerivedCategory.instLinearSingleFunctor, CategoryTheory.InjectiveResolution.exact₀, LeftResolution.chainComplexMap_f_succ_succ, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₂_assoc, CategoryTheory.ShortComplex.SnakeInput.L₂_exact, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₂, CategoryTheory.cokernelUnopOp_inv, CategoryTheory.ShortComplex.kernelSequence_g, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁, CochainComplex.isKProjective_shift_iff, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₁, CategoryTheory.ShortComplex.SnakeInput.exact_C₁_down, HomologicalComplex.instQuasiIsoShortComplexTruncLEX₃ToTruncGE, CategoryTheory.kernelOpOp_hom, LeftResolution.map_chainComplex_d_1_0_assoc, DerivedCategory.instLinearHomotopyCategoryIntUpQh, CategoryTheory.ShortComplex.SnakeInput.Hom.id_f₂, Ext.addEquivBiprod_apply_snd, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CategoryTheory.ShortComplex.SnakeInput.epi_L₁_g, AlgebraicGeometry.tilde.map_neg, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι_assoc, CategoryTheory.ShortComplex.kernelSequence_X₃, Pseudoelement.eq_zero_iff, HomologicalComplex.shortExact_iff_degreewise_shortExact, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.ShortComplex.SnakeInput.comp_f₁, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, DerivedCategory.HomologySequence.δ_comp_assoc, CategoryTheory.kernelCokernelCompSequence.inl_π, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_id, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.InjectiveResolution.ofCocomplex_exactAt_succ, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₁, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d_assoc, DerivedCategory.mem_distTriang_iff, CategoryTheory.ShortComplex.cokernelSequence_X₂, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₃, CochainComplex.isKInjective_iff_rightOrthogonal, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, instIsIsoCoimageImageComparison, DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE, Ext.biprodAddEquiv_symm_apply, CategoryTheory.ProjectiveResolution.ofComplex_exactAt_succ, CategoryTheory.Functor.exact_tfae, DerivedCategory.HomologySequence.exact₃, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, DerivedCategory.Q_map_eq_of_homotopy, CategoryTheory.exact_f_d, CategoryTheory.exact_d_f, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, CategoryTheory.kernelCokernelCompSequence.φ_snd, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, FunctorCategory.coimageObjIso_hom, subobjectIsoSubobjectOp_symm_apply, hasFiniteBiproducts, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, DerivedCategory.isIso_Q_map_iff_quasiIso, DerivedCategory.isIso_Qh_map_iff, CategoryTheory.Functor.map_distinguished_op_exact, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, CategoryTheory.ShortComplex.instMonoFKernelSequence, CochainComplex.instIsMultiplicativeIntDegreewiseEpiWithInjectiveKernel, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel', DerivedCategory.left_fac_of_isStrictlyGE, CategoryTheory.Functor.homologySequenceδ_comp, HomologicalComplex.instIsNormalMonoCategory, HomologicalComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, Ext.addEquivBiprod_apply_fst, CategoryTheory.ShortComplex.SnakeInput.w₁₃, epiWithInjectiveKernel_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst, HomologicalComplex.shortComplexTruncLE_X₃_isSupportedOutside, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, CategoryTheory.InjectiveResolution.descFOne_zero_comm, DoldKan.comparisonN_inv_app_f, FunctorCategory.imageObjIso_inv, CategoryTheory.ShortComplex.SnakeInput.functorL₂_map, CategoryTheory.ShortComplex.SnakeInput.instMonoFL₀'OfL₁, Pseudoelement.zero_apply, CategoryTheory.ShortComplex.SnakeInput.epi_v₂₃_τ₁, CategoryTheory.ShortComplex.instEpiGCokernelSequence, CategoryTheory.ShortComplex.homologyIsoImageICyclesCompPOpcycles_ι_assoc, HomotopyCategory.instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.cokernel_zero_of_nonzero_to_simple, AlgebraicGeometry.Scheme.Modules.instAdditivePushforward, CochainComplex.cm5b, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₁, Ext.biprodAddEquiv_apply_snd, HomologicalComplex.exact_iff_degreewise_exact, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CategoryTheory.ShortComplex.SnakeInput.Hom.comp_f₀, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₂, CategoryTheory.InjectiveResolution.rightDerived_app_eq, CategoryTheory.kernelCokernelCompSequence.instMonoι, coimIsoIm_hom_app, CategoryTheory.InjectiveResolution.Hom.ι'_comp_hom', CategoryTheory.cokernelOpOp_inv, CategoryTheory.ShortComplex.kernelSequence_X₂, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, CategoryTheory.InjectiveResolution.instInjectiveXNatOfCocomplex, has_kernels, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, DerivedCategory.left_fac, AlgebraicTopology.normalizedMooreComplex_obj, CochainComplex.cm5b.I_X, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, coimIsoIm_inv_app, CategoryTheory.instIsIsoFromLeftDerivedZero', CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_f, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, ChainComplex.linearYonedaObj_X, DerivedCategory.instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
coimIsoIm_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coim
im
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
coimIsoIm
coimageImageComparison
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
coimIsoIm_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
im
coim
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
coimIsoIm
CategoryTheory.inv
coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
image
coimageImageComparison
instIsIsoCoimageImageComparison
coim_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coim
CategoryTheory.Limits.cokernel.desc
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.kernel
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.kernel.ι
coimage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
coimage.π
coim_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coim
coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
coimageIsoImage'_hom 📖mathematicalCategoryTheory.Iso.hom
coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
coimageIsoImage'
CategoryTheory.Limits.cokernel.desc
CategoryTheory.Limits.factorThruImage
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.cancel_mono
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsImage.lift_ι
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.image.fac
coimageStrongEpiMonoFactorisation_I 📖mathematicalCategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
coimageStrongEpiMonoFactorisation
coimage
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
coimageStrongEpiMonoFactorisation_e 📖mathematicalCategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
coimageStrongEpiMonoFactorisation
coimage.π
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
coimageStrongEpiMonoFactorisation_m 📖mathematicalCategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
coimageStrongEpiMonoFactorisation
factorThruCoimage
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
comp_coimage_π_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
coimage
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
coimage.π
CategoryTheory.Limits.zero_of_comp_mono
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
instMonoFactorThruCoimage
CategoryTheory.Category.assoc
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.kernel.condition
comp_epiDesc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.kernel.ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
epiDescCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.KernelFork.condition
comp_epiDesc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.kernel.ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
epiDescCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_epiDesc
epi_fst_of_factor_thru_epi_mono_factorization 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Epi
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.PullbackCone.fst
epi_fst_of_isLimit
CategoryTheory.cancel_mono
epi_fst_of_isLimit 📖mathematicalCategoryTheory.Epi
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.epi_of_epi_fac
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
epi_pullback_of_epi_g
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
epi_of_cokernel_π_eq_zero 📖mathematicalCategoryTheory.Limits.cokernel.π
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.EpiCategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Preadditive.epi_of_cokernel_zero
epi_pullback_of_epi_f 📖mathematicalCategoryTheory.Epi
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.snd
CategoryTheory.Preadditive.epi_of_cancel_zero
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Limits.comp_zero
zero_add
CategoryTheory.Limits.KernelFork.condition
CategoryTheory.Limits.biprod.epi_desc_of_epi_left
CategoryTheory.Limits.biprod.inl_desc
CategoryTheory.Category.assoc
CategoryTheory.cancel_epi
CategoryTheory.Limits.biprod.inr_desc
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
epi_pullback_of_epi_g 📖mathematicalCategoryTheory.Epi
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
CategoryTheory.Preadditive.epi_of_cancel_zero
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Limits.comp_zero
add_zero
CategoryTheory.Limits.KernelFork.condition
CategoryTheory.Limits.biprod.epi_desc_of_epi_right
CategoryTheory.Preadditive.instEpiNegHom
CategoryTheory.Limits.biprod.inr_desc
CategoryTheory.Category.assoc
CategoryTheory.cancel_epi
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Limits.biprod.inl_desc
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
epi_snd_of_isLimit 📖mathematicalCategoryTheory.Epi
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.epi_of_epi_fac
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
epi_pullback_of_epi_f
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
factorThruImage_comp_coimageIsoImage'_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.factorThruImage
CategoryTheory.Iso.inv
coimageIsoImage'
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.image.fac_lift
hasBinaryBiproducts 📖mathematicalCategoryTheory.Limits.HasBinaryBiproducts
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.hasBinaryBiproducts_of_finite_biproducts
hasFiniteBiproducts
hasCoequalizers 📖mathematicalCategoryTheory.Limits.HasCoequalizersCategoryTheory.Preadditive.hasCoequalizers_of_hasCokernels
has_cokernels
hasEqualizers 📖mathematicalCategoryTheory.Limits.HasEqualizersCategoryTheory.Preadditive.hasEqualizers_of_hasKernels
has_kernels
hasFiniteBiproducts 📖mathematicalCategoryTheory.Limits.HasFiniteBiproducts
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasFiniteBiproducts.of_hasFiniteProducts
has_finite_products
hasFiniteColimits 📖mathematicalCategoryTheory.Limits.HasFiniteColimitsCategoryTheory.Limits.hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteBiproducts
hasFiniteBiproducts
hasCoequalizers
hasFiniteLimits 📖mathematicalCategoryTheory.Limits.HasFiniteLimitsCategoryTheory.Limits.hasFiniteLimits_of_hasEqualizers_and_finite_products
has_finite_products
hasEqualizers
hasPullbacks 📖mathematicalCategoryTheory.Limits.HasPullbacksCategoryTheory.Limits.hasPullbacks_of_hasBinaryProducts_of_hasEqualizers
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
hasEqualizers
hasPushouts 📖mathematicalCategoryTheory.Limits.HasPushoutsCategoryTheory.Limits.hasPushouts_of_hasBinaryCoproducts_of_hasCoequalizers
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteBiproducts
hasFiniteBiproducts
Finite.of_fintype
hasCoequalizers
hasZeroObject 📖mathematicalCategoryTheory.Limits.HasZeroObjectCategoryTheory.Limits.hasZeroObject_of_hasInitial_object
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteBiproducts
hasFiniteBiproducts
Finite.of_fintype
has_cokernels 📖mathematicalCategoryTheory.Limits.HasCokernels
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
has_finite_products 📖mathematicalCategoryTheory.Limits.HasFiniteProducts
has_kernels 📖mathematicalCategoryTheory.Limits.HasKernels
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
im_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
im
CategoryTheory.Limits.kernel.lift
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Limits.cokernel
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Limits.cokernel.π
image
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image.ι
CategoryTheory.CommaMorphism.right
im_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
im
image
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
imageIsoImage_hom_comp_image_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
image
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Iso.hom
imageIsoImage
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.IsImage.lift_ι
imageIsoImage_inv 📖mathematicalCategoryTheory.Iso.inv
image
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
imageIsoImage
CategoryTheory.Limits.kernel.lift
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.image.ext
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.NormalMonoCategory.hasEqualizers
has_finite_products
toIsNormalMonoCategory
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Limits.IsImage.isoExt_inv
CategoryTheory.Limits.image.isImage_lift
CategoryTheory.Limits.image.fac_lift
imageStrongEpiMonoFactorisation_e
CategoryTheory.Category.assoc
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Limits.equalizer_as_kernel
CategoryTheory.Limits.image.fac
imageStrongEpiMonoFactorisation_I 📖mathematicalCategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
imageStrongEpiMonoFactorisation
image
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
imageStrongEpiMonoFactorisation_e 📖mathematicalCategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
imageStrongEpiMonoFactorisation
factorThruImage
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
imageStrongEpiMonoFactorisation_m 📖mathematicalCategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
imageStrongEpiMonoFactorisation
image.ι
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
image_ι_comp_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
image
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
image.ι
CategoryTheory.Limits.zero_of_epi_comp
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
instEpiFactorThruImage
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.kernel.lift_ι_assoc
instEpiFactorThruImage 📖mathematicalCategoryTheory.Epi
image
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
factorThruImage
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage
instHasStrongEpiMonoFactorisations 📖mathematicalCategoryTheory.Limits.HasStrongEpiMonoFactorisations
instIsIsoCoimageImageComparison 📖mathematicalCategoryTheory.IsIso
coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
image
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
coimageImageComparison
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Category.assoc
coimage_image_factorisation
CategoryTheory.Limits.IsImage.lift_fac
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.kernel.condition
CategoryTheory.Iso.isIso_hom
instMonoFactorThruCoimage 📖mathematicalCategoryTheory.Mono
coimage
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
factorThruCoimage
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage
isIso_factorThruCoimage 📖mathematicalCategoryTheory.IsIso
coimage
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
factorThruCoimage
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage
isIso_factorThruImage 📖mathematicalCategoryTheory.IsIso
image
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
factorThruImage
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage
monoLift_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.cokernel.π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
monoLiftCategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Limits.CokernelCofork.condition
monoLift_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.cokernel.π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
monoLiftCategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
monoLift_comp
mono_inl_of_factor_thru_epi_mono_factorization 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inl
mono_inl_of_isColimit
CategoryTheory.cancel_epi
mono_inl_of_isColimit 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inl
CategoryTheory.mono_of_mono_fac
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
mono_pushout_of_mono_g
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
mono_inr_of_isColimit 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.PushoutCocone.inr
CategoryTheory.mono_of_mono_fac
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
mono_pushout_of_mono_f
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
mono_of_kernel_ι_eq_zero 📖mathematicalCategoryTheory.Limits.kernel.ι
CategoryTheory.NonPreadditiveAbelian.toHasZeroMorphisms
nonPreadditiveAbelian
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.MonoCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Preadditive.mono_of_kernel_zero
mono_pushout_of_mono_f 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.pushout
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.pushout.inr
CategoryTheory.Preadditive.mono_of_cancel_zero
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Limits.zero_comp
zero_add
CategoryTheory.Limits.CokernelCofork.condition
CategoryTheory.Limits.biprod.mono_lift_of_mono_left
CategoryTheory.Limits.biprod.lift_fst
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.Limits.biprod.lift_snd
mono_pushout_of_mono_g 📖mathematicalCategoryTheory.Mono
CategoryTheory.Limits.pushout
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.pushout.inl
CategoryTheory.Preadditive.mono_of_cancel_zero
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Limits.zero_comp
add_zero
CategoryTheory.Limits.CokernelCofork.condition
CategoryTheory.Limits.biprod.mono_lift_of_mono_right
CategoryTheory.Preadditive.instMonoNegHom
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.Preadditive.comp_neg
neg_zero
CategoryTheory.Limits.biprod.lift_fst
toIsNormalEpiCategory 📖mathematicalCategoryTheory.IsNormalEpiCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
toIsNormalMonoCategory 📖mathematicalCategoryTheory.IsNormalMonoCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive

CategoryTheory.Abelian.BiproductToPushoutIsCokernel

Definitions

NameCategoryTheorems
biproductToPushout 📖CompOp
biproductToPushoutCofork 📖CompOp
isColimitBiproductToPushout 📖CompOp

CategoryTheory.Abelian.OfCoimageImageComparisonIsIso

Definitions

NameCategoryTheorems
imageFactorisation 📖CompOp
imageMonoFactorisation 📖CompOp
6 mathmath: imageMonoFactorisation_I, imageMonoFactorisation_m, instIsIsoEImageMonoFactorisationOfHasZeroObjectOfMonoOfCoimageImageComparison, imageMonoFactorisation_e', instIsIsoMImageMonoFactorisationOfHasZeroObjectOfEpi, imageMonoFactorisation_e

Theorems

NameKindAssumesProvesValidatesDepends On
hasImages 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Abelian.coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Abelian.image
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Limits.HasImagesCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
imageMonoFactorisation_I 📖mathematicalCategoryTheory.Limits.MonoFactorisation.I
imageMonoFactorisation
CategoryTheory.Abelian.image
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
imageMonoFactorisation_e 📖mathematicalCategoryTheory.Limits.MonoFactorisation.e
imageMonoFactorisation
CategoryTheory.Limits.kernel.lift
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
imageMonoFactorisation_e' 📖mathematicalCategoryTheory.Limits.MonoFactorisation.e
imageMonoFactorisation
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.kernel
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.image
CategoryTheory.Limits.cokernel.π
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.cokernel.π_desc_assoc
imageMonoFactorisation_m 📖mathematicalCategoryTheory.Limits.MonoFactorisation.m
imageMonoFactorisation
CategoryTheory.Limits.kernel.ι
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
instIsIsoEImageMonoFactorisationOfHasZeroObjectOfMonoOfCoimageImageComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.MonoFactorisation.I
imageMonoFactorisation
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
imageMonoFactorisation_e'
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Limits.cokernel.of_kernel_of_mono
instIsIsoMImageMonoFactorisationOfHasZeroObjectOfEpi 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.MonoFactorisation.I
imageMonoFactorisation
CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Limits.kernel.of_cokernel_of_epi
isNormalEpiCategory 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Abelian.coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Abelian.image
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.IsNormalEpiCategoryCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Limits.kernel.condition
instIsIsoMImageMonoFactorisationOfHasZeroObjectOfEpi
CategoryTheory.Limits.hasZeroObject_of_hasFiniteBiproducts
CategoryTheory.Limits.HasFiniteBiproducts.of_hasFiniteProducts
CategoryTheory.IsIso.comp_inv_eq
imageMonoFactorisation_e'
CategoryTheory.Limits.MonoFactorisation.fac
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.CokernelCofork.π_ofπ
isNormalMonoCategory 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Abelian.coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Abelian.image
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
CategoryTheory.Abelian.coimageImageComparison
CategoryTheory.IsNormalMonoCategoryCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Limits.cokernel.condition
instIsIsoEImageMonoFactorisationOfHasZeroObjectOfMonoOfCoimageImageComparison
CategoryTheory.Limits.hasZeroObject_of_hasFiniteBiproducts
CategoryTheory.Limits.HasFiniteBiproducts.of_hasFiniteProducts
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_comp_eq
CategoryTheory.Limits.MonoFactorisation.fac
CategoryTheory.Limits.limit.lift_π
CategoryTheory.cancel_mono
CategoryTheory.Limits.KernelFork.ι_ofι

CategoryTheory.Abelian.PullbackToBiproductIsKernel

Definitions

NameCategoryTheorems
isLimitPullbackToBiproduct 📖CompOp
pullbackToBiproduct 📖CompOp
pullbackToBiproductFork 📖CompOp

CategoryTheory.Abelian.coimage

Theorems

NameKindAssumesProvesValidatesDepends On
comp_π_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.coimage
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.cancel_mono
CategoryTheory.Abelian.instMonoFactorThruCoimage
CategoryTheory.Category.assoc
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.zero_comp

CategoryTheory.Abelian.image

Theorems

NameKindAssumesProvesValidatesDepends On
ι_comp_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.image
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.cancel_epi
CategoryTheory.Abelian.instEpiFactorThruImage
CategoryTheory.Limits.kernel.lift_ι_assoc
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.comp_zero

CategoryTheory.NonPreadditiveAbelian

Definitions

NameCategoryTheorems
abelian 📖CompOp

---

← Back to Index