π Source: Mathlib/CategoryTheory/Abelian/DiagramLemmas/Four.lean
epi_of_epi_of_epi_of_epi
epi_of_epi_of_epi_of_mono
epi_of_epi_of_epi_of_mono'
epi_of_mono_of_epi_of_mono
epi_of_mono_of_epi_of_mono'
isIso_of_epi_of_isIso_of_isIso_of_mono
mono_of_epi_of_epi_mono'
mono_of_epi_of_epi_of_mono
mono_of_epi_of_mono_of_mono
mono_of_epi_of_mono_of_mono'
mono_of_mono_of_mono_of_mono
CategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Epi
CategoryTheory.ComposableArrows.obj'
CategoryTheory.ComposableArrows.app'
le_rfl
CategoryTheory.ComposableArrows.naturality'
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
CategoryTheory.ShortComplex.exact_iff_epi
hasZeroObject
CategoryTheory.ShortComplex.Exact.exact_toComposableArrows
CategoryTheory.ComposableArrows.Exact.toIsComplex
CategoryTheory.ComposableArrows.Exact.exact
CategoryTheory.instMonoId
CategoryTheory.ComposableArrows.map'_comp
CategoryTheory.ComposableArrows.IsComplex.zero
CategoryTheory.ComposableArrows.mkβ
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.epi_iff_surjective_up_to_refinements
CategoryTheory.surjective_up_to_refinements_of_epi
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.NatTrans.naturality
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.ShortComplex.Exact.exact_up_to_refinements
CategoryTheory.Preadditive.sub_comp
sub_self
CategoryTheory.epi_comp
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.comp_sub
add_sub_cancel
CategoryTheory.ShortComplex.exact_iff_mono
CategoryTheory.Functor.map_comp
CategoryTheory.instEpiId
CategoryTheory.IsIso
CategoryTheory.ComposableArrows.exact_iff_Ξ΄last
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.ComposableArrows.exact_iff_Ξ΄β
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.Mono
CategoryTheory.Preadditive.mono_of_cancel_zero
CategoryTheory.cancel_epi
Exact
CategoryTheory.Abelian.toPreadditive
Xβ
Hom.Οβ
CategoryTheory.Abelian.epi_of_epi_of_epi_of_epi
Exact.exact_toComposableArrows
Xβ
Hom.Οβ
CategoryTheory.Abelian.epi_of_mono_of_epi_of_mono'
zero
Xβ
Hom.Οβ
CategoryTheory.Abelian.mono_of_epi_of_epi_mono'
CategoryTheory.Abelian.mono_of_mono_of_mono_of_mono
---
β Back to Index