Documentation Verification Report

KernelCokernelComp

πŸ“ Source: Mathlib/CategoryTheory/Abelian/DiagramLemmas/KernelCokernelComp.lean

Statistics

MetricCount
DefinitionskernelCokernelCompSequence, isColimit, isLimit, snakeInput, Ξ΄, ΞΉ, Ο€, Ο†
8
TheoremsinstEpiMap'KernelCokernelCompSequenceOfNatNat, instMonoMap'KernelCokernelCompSequenceOfNatNat, inl_Ο€, inl_Ο€_assoc, inl_Ο†, inl_Ο†_assoc, inr_Ο€, inr_Ο€_assoc, inr_Ο†_fst, inr_Ο†_fst_assoc, instEpiΟ€, instMonoΞΉ, snakeInput_Lβ‚€_X₁, snakeInput_Lβ‚€_Xβ‚‚, snakeInput_Lβ‚€_X₃, snakeInput_Lβ‚€_f, snakeInput_Lβ‚€_g, snakeInput_L₁_X₁, snakeInput_L₁_Xβ‚‚, snakeInput_L₁_X₃, snakeInput_L₁_f, snakeInput_L₁_g, snakeInput_Lβ‚‚_X₁, snakeInput_Lβ‚‚_Xβ‚‚, snakeInput_Lβ‚‚_X₃, snakeInput_Lβ‚‚_f, snakeInput_Lβ‚‚_g, snakeInput_L₃_X₁, snakeInput_L₃_Xβ‚‚, snakeInput_L₃_X₃, snakeInput_L₃_f, snakeInput_L₃_g, snakeInput_v₀₁_τ₁, snakeInput_v₀₁_Ο„β‚‚, snakeInput_v₀₁_τ₃, snakeInput_v₁₂_τ₁, snakeInput_v₁₂_Ο„β‚‚, snakeInput_v₁₂_τ₃, snakeInput_v₂₃_τ₁, snakeInput_v₂₃_Ο„β‚‚, snakeInput_v₂₃_τ₃, Ξ΄_fac, ΞΉ_fst, ΞΉ_fst_assoc, ΞΉ_snd, ΞΉ_snd_assoc, ΞΉ_Ο†, ΞΉ_Ο†_assoc, Ο†_snd, Ο†_snd_assoc, Ο†_Ο€, Ο†_Ο€_assoc, kernelCokernelCompSequence_exact
53
Total61

CategoryTheory

Definitions

NameCategoryTheorems
kernelCokernelCompSequence πŸ“–CompOp
3 mathmath: instMonoMap'KernelCokernelCompSequenceOfNatNat, kernelCokernelCompSequence_exact, instEpiMap'KernelCokernelCompSequenceOfNatNat

Theorems

NameKindAssumesProvesValidatesDepends On
instEpiMap'KernelCokernelCompSequenceOfNatNat πŸ“–mathematicalβ€”Epi
Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
kernelCokernelCompSequence
ComposableArrows.map'
β€”Limits.cokernel.desc_epi
epi_comp
instEpiId
Limits.coequalizer.Ο€_epi
instMonoMap'KernelCokernelCompSequenceOfNatNat πŸ“–mathematicalβ€”Mono
Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
kernelCokernelCompSequence
ComposableArrows.map'
β€”Limits.kernel.lift_mono
mono_comp
Limits.equalizer.ΞΉ_mono
instMonoId
kernelCokernelCompSequence_exact πŸ“–mathematicalβ€”ComposableArrows.Exact
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
kernelCokernelCompSequence
β€”ShortComplex.SnakeInput.snake_lemma

CategoryTheory.kernelCokernelCompSequence

Definitions

NameCategoryTheorems
isColimit πŸ“–CompOpβ€”
isLimit πŸ“–CompOpβ€”
snakeInput πŸ“–CompOp
29 mathmath: snakeInput_v₀₁_Ο„β‚‚, snakeInput_Lβ‚€_X₁, snakeInput_Lβ‚€_Xβ‚‚, snakeInput_L₃_g, snakeInput_Lβ‚‚_X₃, snakeInput_v₂₃_τ₃, snakeInput_L₁_g, snakeInput_L₁_X₃, snakeInput_L₃_f, snakeInput_v₂₃_Ο„β‚‚, snakeInput_v₁₂_Ο„β‚‚, snakeInput_Lβ‚€_g, snakeInput_Lβ‚‚_Xβ‚‚, snakeInput_v₁₂_τ₃, snakeInput_L₃_X₃, snakeInput_L₁_Xβ‚‚, snakeInput_Lβ‚‚_g, snakeInput_L₁_f, snakeInput_v₀₁_τ₁, snakeInput_v₀₁_τ₃, snakeInput_L₃_X₁, snakeInput_Lβ‚€_f, snakeInput_L₁_X₁, snakeInput_v₂₃_τ₁, snakeInput_v₁₂_τ₁, snakeInput_Lβ‚€_X₃, snakeInput_Lβ‚‚_X₁, snakeInput_L₃_Xβ‚‚, snakeInput_Lβ‚‚_f
Ξ΄ πŸ“–CompOp
1 mathmath: Ξ΄_fac
ΞΉ πŸ“–CompOp
8 mathmath: snakeInput_v₀₁_Ο„β‚‚, ΞΉ_Ο†, ΞΉ_fst_assoc, ΞΉ_fst, ΞΉ_snd, ΞΉ_snd_assoc, instMonoΞΉ, ΞΉ_Ο†_assoc
Ο€ πŸ“–CompOp
8 mathmath: inl_Ο€_assoc, inr_Ο€_assoc, snakeInput_v₂₃_Ο„β‚‚, inr_Ο€, instEpiΟ€, Ο†_Ο€, inl_Ο€, Ο†_Ο€_assoc
Ο† πŸ“–CompOp
11 mathmath: ΞΉ_Ο†, Ο†_snd_assoc, inr_Ο†_fst_assoc, snakeInput_v₁₂_Ο„β‚‚, inl_Ο†, Ο†_Ο€, inl_Ο†_assoc, Ο†_snd, inr_Ο†_fst, ΞΉ_Ο†_assoc, Ο†_Ο€_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
inl_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.biprod.inl
Ο€
CategoryTheory.Limits.cokernel.Ο€
β€”CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inl_desc
inl_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
Ο€
CategoryTheory.Limits.cokernel.Ο€
β€”CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_Ο€
inl_Ο† πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inl
Ο†
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inl_desc
inl_Ο†_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inl
Ο†
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_Ο†
inr_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.biprod.inr
Ο€
CategoryTheory.Limits.cokernel.Ο€
β€”CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inr_desc
inr_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
Ο€
CategoryTheory.Limits.cokernel.Ο€
β€”CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_Ο€
inr_Ο†_fst πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inr
Ο†
CategoryTheory.Limits.biprod.fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inr_desc_assoc
CategoryTheory.Limits.biprod.lift_fst
inr_Ο†_fst_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.inr
Ο†
CategoryTheory.Limits.biprod.fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_Ο†_fst
instEpiΟ€ πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
Ο€
β€”CategoryTheory.epi_of_epi_fac
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.coequalizer.Ο€_epi
inr_Ο€
instMonoΞΉ πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
β€”CategoryTheory.mono_of_mono_fac
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.equalizer.ΞΉ_mono
ΞΉ_fst
snakeInput_Lβ‚€_X₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚€
snakeInput
CategoryTheory.Limits.kernel
β€”β€”
snakeInput_Lβ‚€_Xβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚€
snakeInput
CategoryTheory.Limits.kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
snakeInput_Lβ‚€_X₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚€
snakeInput
CategoryTheory.Limits.kernel
β€”β€”
snakeInput_Lβ‚€_f πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚€
snakeInput
CategoryTheory.Limits.kernel.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
β€”β€”
snakeInput_Lβ‚€_g πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.g
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚€
snakeInput
CategoryTheory.Limits.kernel.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
β€”β€”
snakeInput_L₁_X₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₁
snakeInput
β€”β€”
snakeInput_L₁_Xβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₁
snakeInput
CategoryTheory.Limits.biprod
β€”β€”
snakeInput_L₁_X₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₁
snakeInput
β€”β€”
snakeInput_L₁_f πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₁
snakeInput
CategoryTheory.Limits.biprod.inl
β€”β€”
snakeInput_L₁_g πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.g
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₁
snakeInput
CategoryTheory.Limits.biprod.snd
β€”β€”
snakeInput_Lβ‚‚_X₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚‚
snakeInput
β€”β€”
snakeInput_Lβ‚‚_Xβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚‚
snakeInput
CategoryTheory.Limits.biprod
β€”β€”
snakeInput_Lβ‚‚_X₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚‚
snakeInput
β€”β€”
snakeInput_Lβ‚‚_f πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚‚
snakeInput
CategoryTheory.Limits.biprod.inl
β€”β€”
snakeInput_Lβ‚‚_g πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.g
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.Lβ‚‚
snakeInput
CategoryTheory.Limits.biprod.snd
β€”β€”
snakeInput_L₃_X₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₃
snakeInput
CategoryTheory.Limits.cokernel
β€”β€”
snakeInput_L₃_Xβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₃
snakeInput
CategoryTheory.Limits.cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
snakeInput_L₃_X₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₃
snakeInput
CategoryTheory.Limits.cokernel
β€”β€”
snakeInput_L₃_f πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₃
snakeInput
CategoryTheory.Limits.cokernel.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
β€”β€”
snakeInput_L₃_g πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.g
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.SnakeInput.L₃
snakeInput
CategoryTheory.Limits.cokernel.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
β€”β€”
snakeInput_v₀₁_τ₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.ShortComplex.SnakeInput.v₀₁
snakeInput
CategoryTheory.Limits.kernel.ΞΉ
β€”β€”
snakeInput_v₀₁_Ο„β‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.ShortComplex.SnakeInput.v₀₁
snakeInput
ΞΉ
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
snakeInput_v₀₁_τ₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.kernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.ShortComplex.SnakeInput.v₀₁
snakeInput
CategoryTheory.Limits.kernel.ΞΉ
β€”β€”
snakeInput_v₁₂_τ₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.ShortComplex.SnakeInput.v₁₂
snakeInput
β€”β€”
snakeInput_v₁₂_Ο„β‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.ShortComplex.SnakeInput.v₁₂
snakeInput
Ο†
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
snakeInput_v₁₂_τ₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.ShortComplex.SnakeInput.v₁₂
snakeInput
β€”β€”
snakeInput_v₂₃_τ₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.Limits.cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel.map
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput.v₂₃
snakeInput
CategoryTheory.Limits.cokernel.Ο€
β€”β€”
snakeInput_v₂₃_Ο„β‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.Limits.cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel.map
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput.v₂₃
snakeInput
Ο€
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
snakeInput_v₂₃_τ₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
CategoryTheory.Limits.cokernel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel.map
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput.v₂₃
snakeInput
CategoryTheory.Limits.cokernel.Ο€
β€”β€”
Ξ΄_fac πŸ“–mathematicalβ€”Ξ΄
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.kernel.ΞΉ
CategoryTheory.Limits.cokernel.Ο€
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Category.id_comp
CategoryTheory.Preadditive.neg_comp
CategoryTheory.ShortComplex.SnakeInput.Ξ΄_eq
CategoryTheory.Category.assoc
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.Category.comp_id
CategoryTheory.Limits.biprod.hom_ext
CategoryTheory.Limits.BinaryBicone.inl_fst
inr_Ο†_fst
CategoryTheory.Preadditive.comp_neg
CategoryTheory.Limits.BinaryBicone.inl_snd
CategoryTheory.Limits.comp_zero
neg_zero
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Ο†_snd
CategoryTheory.Limits.BinaryBicone.inr_snd_assoc
CategoryTheory.Limits.kernel.condition
ΞΉ_fst πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
CategoryTheory.Limits.biprod.fst
CategoryTheory.Limits.kernel.ΞΉ
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_fst
ΞΉ_fst_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
CategoryTheory.Limits.biprod.fst
CategoryTheory.Limits.kernel.ΞΉ
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΞΉ_fst
ΞΉ_snd πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
CategoryTheory.Limits.biprod.snd
CategoryTheory.Limits.kernel.ΞΉ
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_snd
ΞΉ_snd_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
CategoryTheory.Limits.biprod.snd
CategoryTheory.Limits.kernel.ΞΉ
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΞΉ_snd
ΞΉ_Ο† πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
Ο†
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Category.assoc
CategoryTheory.Limits.biprod.hom_ext
CategoryTheory.Preadditive.add_comp
CategoryTheory.Limits.BinaryBicone.inl_fst
CategoryTheory.Category.comp_id
CategoryTheory.Limits.biprod.lift_fst
CategoryTheory.Preadditive.comp_neg
add_neg_cancel
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.BinaryBicone.inl_snd
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Limits.kernel.condition
add_zero
ΞΉ_Ο†_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.biprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
ΞΉ
Ο†
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΞΉ_Ο†
Ο†_snd πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Ο†
CategoryTheory.Limits.biprod.snd
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.biprod.hom_ext'
CategoryTheory.Limits.biprod.inl_desc_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.BinaryBicone.inl_snd
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.BinaryBicone.inl_snd_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.biprod.inr_desc_assoc
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Limits.BinaryBicone.inr_snd_assoc
Ο†_snd_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Ο†
CategoryTheory.Limits.biprod.snd
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Ο†_snd
Ο†_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
Ο†
Ο€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.biprod.hom_ext'
CategoryTheory.Limits.biprod.inl_desc_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.biprod.inl_desc
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.biprod.inr_desc_assoc
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.id_comp
neg_add_cancel
Ο†_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Ο†
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
Ο€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Ο†_Ο€

---

← Back to Index