Documentation Verification Report

EpiWithInjectiveKernel

📁 Source: Mathlib/CategoryTheory/Abelian/EpiWithInjectiveKernel.lean

Statistics

MetricCount
DefinitionsepiWithInjectiveKernel
1
TheoremsepiWithInjectiveKernel_iff, epiWithInjectiveKernel_of_iso, instIsMultiplicativeEpiWithInjectiveKernel
3
Total4

CategoryTheory.Abelian

Definitions

NameCategoryTheorems
epiWithInjectiveKernel 📖CompOp
3 mathmath: instIsMultiplicativeEpiWithInjectiveKernel, epiWithInjectiveKernel_of_iso, epiWithInjectiveKernel_iff

Theorems

NameKindAssumesProvesValidatesDepends On
epiWithInjectiveKernel_iff 📖mathematicalepiWithInjectiveKernel
CategoryTheory.ShortComplex.Splitting
toPreadditive
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.kernel.condition
CategoryTheory.ShortComplex.zero
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.Injective.comp_factorThru
CategoryTheory.ShortComplex.Splitting.s_g
CategoryTheory.ShortComplex.Splitting.shortExact
hasZeroObject
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.instIsRegularEpiOfIsSplitEpi
CategoryTheory.Injective.of_iso
epiWithInjectiveKernel_of_iso 📖mathematicalepiWithInjectiveKernelepiWithInjectiveKernel_iff
hasZeroObject
CategoryTheory.Injective.zero_injective
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.isZero_zero
instIsMultiplicativeEpiWithInjectiveKernel 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
epiWithInjectiveKernel
epiWithInjectiveKernel_of_iso
CategoryTheory.IsIso.id
epiWithInjectiveKernel_iff
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
hasBinaryBiproducts
CategoryTheory.Injective.instBiprod
CategoryTheory.Limits.biprod.hom_ext'
CategoryTheory.Preadditive.add_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
zero_add
CategoryTheory.Limits.BinaryBicone.inl_snd_assoc
CategoryTheory.Category.id_comp
CategoryTheory.ShortComplex.Splitting.s_g
add_zero
CategoryTheory.Limits.BinaryBicone.inr_fst_assoc
CategoryTheory.Limits.biprod.hom_ext
CategoryTheory.Preadditive.comp_add
CategoryTheory.ShortComplex.Splitting.s_r_assoc
CategoryTheory.Limits.BinaryBicone.inl_fst_assoc
CategoryTheory.Limits.BinaryBicone.inl_fst
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.Splitting.f_r
CategoryTheory.Limits.BinaryBicone.inr_fst
CategoryTheory.Limits.BinaryBicone.inl_snd
CategoryTheory.Limits.BinaryBicone.inr_snd_assoc
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.whisker_eq
CategoryTheory.eq_whisker
CategoryTheory.ShortComplex.Splitting.id
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg

---

← Back to Index