Documentation Verification Report

Exact

📁 Source: Mathlib/CategoryTheory/Abelian/Exact.lean

Statistics

MetricCount
DefinitionsExact, Exact, isColimitCoimage, isColimitImage, isLimitImage, isLimitImage'
6
Theoremstfae_epi, tfae_mono, preservesEpimorphisms_of_map_exact, preservesHomology_of_map_exact, preservesHomology_of_preservesEpis_and_kernels, preservesHomology_of_preservesMonos_and_cokernels, preservesMonomorphisms_of_map_exact, reflects_exact_of_faithful, isIso_imageToKernel, isIso_imageToKernel', exact_cokernel, exact_iff_epi_imageToKernel, exact_iff_epi_imageToKernel', exact_iff_exact_coimage_π, exact_iff_exact_image_ι, exact_iff_image_eq_kernel, exact_iff_isIso_imageToKernel, exact_iff_isIso_imageToKernel', exact_iff_of_forks, exact_kernel
20
Total26

CategoryTheory.Abelian

Theorems

NameKindAssumesProvesValidatesDepends On
tfae_epi 📖mathematical—List.TFAE
CategoryTheory.Epi
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.Exact
CategoryTheory.Limits.comp_zero
—CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
epi_of_cokernel_π_eq_zero
CategoryTheory.cancel_epi
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.comp_zero
CategoryTheory.ShortComplex.exact_iff_epi
hasZeroObject
List.tfae_of_cycle
tfae_mono 📖mathematical—List.TFAE
CategoryTheory.Mono
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.kernel.Κ
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.Exact
CategoryTheory.Limits.zero_comp
—CategoryTheory.Limits.HasKernels.has_limit
has_kernels
mono_of_kernel_Κ_eq_zero
CategoryTheory.cancel_mono
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.zero_comp
CategoryTheory.ShortComplex.exact_iff_mono
hasZeroObject
List.tfae_of_cycle

CategoryTheory.ComposableArrows

Definitions

NameCategoryTheorems
Exact 📖CompData
18 mathmath: exact_iff_δlast, exact₀, exact_iff_δ₀, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sequence_exact, CategoryTheory.ShortComplex.exact_iff_exact_toComposableArrows, CategoryTheory.Functor.homologySequenceComposableArrows₅_exact, exact₂_mk, CategoryTheory.kernelCokernelCompSequence_exact, CategoryTheory.Abelian.Ext.covariantSequence_exact, exact_iff_of_iso, CategoryTheory.ShortComplex.SnakeInput.snake_lemma, exact₂_iff, HomologicalComplex.HomologySequence.composableArrows₅_exact, CategoryTheory.ShortComplex.Exact.exact_toComposableArrows, HomologicalComplex.HomologySequence.composableArrows₂_exact, HomologicalComplex.HomologySequence.composableArrows₃_exact, CategoryTheory.Abelian.Ext.contravariantSequence_exact, exact₁

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
preservesEpimorphisms_of_map_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.map
PreservesEpimorphisms—CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.comp_zero
List.TFAE.out
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Abelian.tfae_epi
CategoryTheory.ShortComplex.exact_of_iso
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_zero
preservesHomology_of_map_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.map
PreservesHomology—preservesMonomorphisms_of_map_exact
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.comp_zero
map_mono
CategoryTheory.Limits.equalizer.Κ_mono
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
preservesEpimorphisms_of_map_exact
CategoryTheory.Limits.preservesColimit_of_preserves_colimit_cocone
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.zero_comp
map_epi
CategoryTheory.Limits.coequalizer.π_epi
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
preservesHomology_of_preservesEpis_and_kernels 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
PreservesHomology—preservesHomology_of_map_exact
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Abelian.image_Κ_comp_eq_zero
CategoryTheory.ShortComplex.zero
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Abelian.has_kernels
CategoryTheory.Category.comp_id
map_comp
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.kernel.lift_Κ
CategoryTheory.Category.id_comp
CategoryTheory.ShortComplex.exact_iff_of_epi_of_isIso_of_mono
map_epi
CategoryTheory.Abelian.instEpiFactorThruImage
CategoryTheory.IsIso.id
CategoryTheory.instMonoId
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.ShortComplex.exact_iff_exact_image_Κ
CategoryTheory.Limits.equalizer.Κ_mono
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
preservesHomology_of_preservesMonos_and_cokernels 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
PreservesHomology—preservesHomology_of_map_exact
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.NonPreadditiveAbelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.NonPreadditiveAbelian.has_cokernels
CategoryTheory.Abelian.comp_coimage_π_eq_zero
CategoryTheory.ShortComplex.zero
CategoryTheory.Abelian.has_kernels
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_comp
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.ShortComplex.exact_iff_of_epi_of_isIso_of_mono
CategoryTheory.instEpiId
CategoryTheory.IsIso.id
map_mono
CategoryTheory.Abelian.instMonoFactorThruCoimage
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.ShortComplex.exact_iff_exact_coimage_π
CategoryTheory.Limits.coequalizer.π_epi
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
preservesMonomorphisms_of_map_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.map
PreservesMonomorphisms—CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.zero_comp
List.TFAE.out
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Abelian.tfae_mono
CategoryTheory.ShortComplex.exact_of_iso
CategoryTheory.Limits.comp_zero
map_zero
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
reflects_exact_of_faithful 📖—CategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.map
——CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
zero_of_map_zero
map_comp
CategoryTheory.Limits.kernel.condition
map_zero
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
Exact 📖CompData
136 mathmath: HomologyData.exact_iff, SnakeInput.exact_C₃_up, SnakeInput.L₀'_exact, Splitting.exact, exact_iff_of_epi_of_isIso_of_mono, SnakeInput.L₃_exact, groupHomology.H1CoresCoinf_exact, SnakeInput.exact_C₁_up, SnakeInput.L₁_exact, LeftHomologyData.exact_iff_epi_f', exact_iff_iCycles_pOpcycles_zero, exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.Abelian.Pseudoelement.exact_of_pseudo_exact, CategoryTheory.Abelian.Ext.contravariant_sequence_exact₁', groupCohomology.mapShortComplex₃_exact, exact_and_mono_f_iff_of_iso, exact_iff_isIso_imageToKernel', DerivedCategory.HomologySequence.exact₂, CategoryTheory.IsPullback.exact_shortComplex', CategoryTheory.Abelian.tfae_epi, SnakeInput.exact_C₂_down, kernelSequence_exact, ShortExact.exact, exact_op_iff, CategoryTheory.Abelian.Ext.contravariant_sequence_exact₂', Profinite.NobelingProof.succ_exact, exact_unop_iff, RightHomologyData.exact_iff, exact_iff_exact_image_ι, exact_iff_isIso_imageToKernel, CategoryTheory.Abelian.Ext.covariant_sequence_exact₁', Module.Flat.iff_rTensor_preserves_shortComplex_exact, CategoryTheory.Abelian.Ext.covariant_sequence_exact₃', exact_iff_surjective_abToCycles, Module.Flat.iff_lTensor_preserves_shortComplex_exact, exact_iff_of_hasForget, ab_exact_iff_function_exact, exact_cokernel, groupHomology.mapShortComplex₃_exact, exact_of_g_is_cokernel, LeftHomologyData.exact_map_iff, exact_iff_isZero_homology, HomologicalComplex.exactAt_iff, CategoryTheory.Functor.homologySequence_exact₂, SnakeInput.L₀_exact, exact_iff_of_iso, CategoryTheory.Functor.preservesFiniteColimits_iff_forall_exact_map_and_epi, ChainComplex.isIso_descOpcycles_iff, exact_kernel, exact_iff_epi_toCycles, exact_and_epi_g_iff_g_is_cokernel, exact_iff_exact_toComposableArrows, groupCohomology.mapShortComplex₂_exact, SnakeInput.exact_C₂_up, CategoryTheory.Functor.homologySequence_exact₃, quasiIso_iff_of_zeros', quasiIso_iff_of_zeros, exact_iff_i_p_zero, ab_exact_iff_ker_le_range, ShortExact.moduleCat_exact_iff_function_exact, CategoryTheory.ProjectiveResolution.exact_succ, CochainComplex.isIso_liftCycles_iff, SnakeInput.L₁'_exact, CategoryTheory.Abelian.Ext.covariant_sequence_exact₂', exact_iff_surjective_moduleCatToCycles, RightHomologyData.exact_iff_mono_g', exact_iff_mono, exact_iff_exact_up_to_refinements, ab_exact_iff, groupHomology.shortComplexH0_exact, exact_iff_isZero_leftHomology, ShortExact.homology_exact₃, HomologyData.exact_iff_i_p_zero, DerivedCategory.HomologySequence.exact₁, CategoryTheory.Functor.preservesFiniteLimits_iff_forall_exact_map_and_mono, moduleCat_exact_iff_ker_sub_range, moduleCat_exact_iff, groupHomology.mapShortComplex₂_exact, groupCohomology.mapShortComplex₁_exact, exact_and_epi_g_iff_of_iso, RightHomologyData.exact_map_iff, cokernelSequence_exact, exact_iff_mono_cokernel_desc, exact_and_mono_f_iff_f_is_kernel, CategoryTheory.Functor.map_distinguished_exact, CategoryTheory.ComposableArrows.exact₂_iff, SnakeInput.L₂'_exact, exact_iff_epi_imageToKernel, groupHomology.H1CoresCoinfOfTrivial_exact, groupHomology.mapShortComplex₁_exact, CategoryTheory.Functor.homologySequence_exact₁, exact_iff_image_eq_kernel, exact_of_f_is_kernel, groupCohomology.H1InfRes_exact, moduleCat_exact_iff_range_eq_ker, exact_iff_epi_kernel_lift, CategoryTheory.ComposableArrows.Exact.exact', LeftHomologyData.exact_iff, CategoryTheory.ProjectiveResolution.exact₀, CategoryTheory.IsPushout.exact_shortComplex, SnakeInput.exact_C₃_down, CategoryTheory.Functor.IsHomological.exact, QuasiIso.exact_iff, exact_iff_homology_iso_zero, exact_map_iff_of_faithful, CategoryTheory.Abelian.tfae_mono, exact_iff_mono_fromOpcycles, exact_iff_exact_coimage_π, CategoryTheory.InjectiveResolution.exact_succ, exact_iff_isZero_rightHomology, CategoryTheory.Abelian.Ext.contravariant_sequence_exact₃', groupCohomology.shortComplexH0_exact, exact_iff_of_forks, ShortExact.homology_exact₁, ab_exact_iff_range_eq_ker, CategoryTheory.InjectiveResolution.exact₀, SnakeInput.L₂_exact, SnakeInput.exact_C₁_down, exact_of_isZero_X₂, CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished, Exact.moduleCat_of_range_eq_ker, DerivedCategory.HomologySequence.exact₃, exact_iff_epi, CategoryTheory.exact_f_d, CategoryTheory.exact_d_f, CategoryTheory.Functor.map_distinguished_op_exact, CategoryTheory.ComposableArrows.Exact.exact, exact_iff_epi_imageToKernel', HomologicalComplex.exactAt_iff', HomologyData.exact_iff', exact_iff_exact_map_forget₂, ModuleCat.smulShortComplex_exact, ShortExact.homology_exact₂, HomologicalComplex.exact_iff_degreewise_exact, ShortExact.ab_exact_iff_function_exact, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_exact

Theorems

NameKindAssumesProvesValidatesDepends On
exact_cokernel 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.cokernel.π
—exact_of_g_is_cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_iff_epi_imageToKernel 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Subobject
X₂
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Limits.imageSubobject
X₁
f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernelSubobject
X₃
g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
imageToKernel
zero
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
zero
exact_iff_epi_imageToKernel'
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.epimorphisms
imageToKernel'_kernelSubobjectIso
exact_iff_epi_imageToKernel' 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Epi
CategoryTheory.Limits.image
X₁
X₂
f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernel
X₃
g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
imageToKernel'
zero
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
zero
exact_iff_epi_kernel_lift
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.cancel_mono
CategoryTheory.Limits.equalizer.Κ_mono
CategoryTheory.Category.assoc
CategoryTheory.Limits.kernel.lift_Κ
CategoryTheory.Limits.image.fac
CategoryTheory.epi_of_epi_fac
CategoryTheory.epi_comp
CategoryTheory.Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Preadditive.hasEqualizers_of_hasKernels
exact_iff_exact_coimage_π 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
X₁
X₂
CategoryTheory.Abelian.coimage
X₃
g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.Κ
f
CategoryTheory.Abelian.coimage.π
CategoryTheory.Abelian.comp_coimage_π_eq_zero
zero
—CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Abelian.comp_coimage_π_eq_zero
zero
exact_iff_of_epi_of_isIso_of_mono
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.kernel.condition
CategoryTheory.instEpiId
CategoryTheory.IsIso.id
CategoryTheory.Abelian.instMonoFactorThruCoimage
exact_iff_exact_image_ι 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.image
X₁
X₂
f
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
X₃
CategoryTheory.Abelian.image.Κ
g
CategoryTheory.Abelian.image_Κ_comp_eq_zero
zero
—exact_iff_of_epi_of_isIso_of_mono
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Abelian.image_Κ_comp_eq_zero
zero
CategoryTheory.Limits.kernel.lift_Κ
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Abelian.instEpiFactorThruImage
CategoryTheory.IsIso.id
CategoryTheory.instMonoId
exact_iff_image_eq_kernel 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.imageSubobject
X₁
X₂
f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernelSubobject
X₃
g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
zero
exact_iff_isIso_imageToKernel
CategoryTheory.Subobject.eq_of_comm
imageToKernel_arrow
Eq.ge
CategoryTheory.Subobject.eq_of_comp_arrow_eq
CategoryTheory.Category.assoc
CategoryTheory.Subobject.ofLE_arrow
CategoryTheory.Category.id_comp
exact_iff_isIso_imageToKernel 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Subobject
X₂
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Limits.imageSubobject
X₁
f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernelSubobject
X₃
g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
imageToKernel
zero
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
zero
exact_iff_epi_imageToKernel
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
instMonoImageToKernel
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
exact_iff_isIso_imageToKernel' 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.IsIso
CategoryTheory.Limits.image
X₁
X₂
f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernel
X₃
g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
imageToKernel'
zero
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
zero
exact_iff_epi_imageToKernel'
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Limits.kernel.lift_mono
CategoryTheory.Limits.instMonoΚ
exact_iff_of_forks 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
X₂
X₃
g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cocone.pt
X₁
f
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Limits.Fork.Κ
CategoryTheory.Limits.Cofork.π
—CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
exact_iff_kernel_ι_comp_cokernel_π_zero
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Preadditive.IsIso.comp_left_eq_zero
CategoryTheory.Iso.isIso_inv
CategoryTheory.Preadditive.IsIso.comp_right_eq_zero
CategoryTheory.Iso.isIso_hom
exact_kernel 📖mathematical—Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.kernel
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.kernel.Κ
—exact_of_f_is_kernel
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian

CategoryTheory.ShortComplex.Exact

Definitions

NameCategoryTheorems
isColimitCoimage 📖CompOp—
isColimitImage 📖CompOp—
isLimitImage 📖CompOp—
isLimitImage' 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_imageToKernel 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.ShortComplex.X₂
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Limits.imageSubobject
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernelSubobject
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
imageToKernel
CategoryTheory.ShortComplex.zero
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel
isIso_imageToKernel' 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.IsIso
CategoryTheory.Limits.image
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.kernel
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
imageToKernel'
CategoryTheory.ShortComplex.zero
—CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel'

---

← Back to Index