Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Abelian/GrothendieckCategory/Basic.lean

Statistics

MetricCount
DefinitionsIsGrothendieckAbelian
1
Theoremsab4OfSize, ab5OfSize, hasColimits, hasFilteredColimitsOfSize, hasLimits, hasSeparator, locallySmall, of_equivalence, wellPowered, isGrothendieckAbelian
10
Total11

CategoryTheory

Definitions

NameCategoryTheorems
IsGrothendieckAbelian 📖CompData
8 mathmath: ShrinkHoms.isGrothendieckAbelian, Sheaf.instIsGrothendieckAbelian, Sheaf.isGrothendieckAbelian_of_essentiallySmall, Limits.isGrothendieckAbelian_ind, HomologicalComplex.isGrothendieckAbelian, IsGrothendieckAbelian.of_equivalence, instIsGrothendieckAbelianModuleCat, LightCondensed.instIsGrothendieckAbelianLightCondMod

CategoryTheory.IsGrothendieckAbelian

Theorems

NameKindAssumesProvesValidatesDepends On
ab4OfSize 📖mathematicalCategoryTheory.AB4OfSize
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Discrete
CategoryTheory.discreteCategory
hasColimits
CategoryTheory.Limits.HasFiniteBiproducts.of_hasFiniteProducts
CategoryTheory.Limits.hasFiniteProducts_of_hasCountableProducts
CategoryTheory.Limits.hasCountableProducts_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
hasLimits
CategoryTheory.AB4.of_AB5
CategoryTheory.Abelian.hasFiniteLimits
hasFilteredColimitsOfSize
ab5OfSize
ab5OfSize 📖mathematicalCategoryTheory.AB5OfSize
hasFilteredColimitsOfSize
hasColimits 📖mathematicalCategoryTheory.Limits.HasColimitsOfSizeCategoryTheory.Limits.has_colimits_of_finite_and_filtered
CategoryTheory.Abelian.hasFiniteColimits
hasFilteredColimitsOfSize
hasFilteredColimitsOfSize 📖mathematicalCategoryTheory.Limits.HasFilteredColimitsOfSize
hasLimits 📖mathematicalCategoryTheory.Limits.HasLimitsOfSizelocallySmall
CategoryTheory.Limits.hasLimits_of_hasColimits_of_hasSeparator
hasColimits
CategoryTheory.ShrinkHoms.isGrothendieckAbelian
hasSeparator
CategoryTheory.Abelian.wellPowered_opposite
CategoryTheory.HasSeparator.wellPowered
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.ShrinkHoms.hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Adjunction.has_limits_of_equivalence
CategoryTheory.Equivalence.isEquivalence_functor
hasSeparator 📖mathematicalCategoryTheory.HasSeparator
locallySmall 📖mathematicalCategoryTheory.LocallySmall
of_equivalence 📖mathematicalCategoryTheory.IsGrothendieckAbelianCategoryTheory.Adjunction.hasColimitsOfShape_of_equivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
hasFilteredColimitsOfSize
CategoryTheory.locallySmall_of_faithful
CategoryTheory.Equivalence.faithful_inverse
locallySmall
CategoryTheory.HasExactColimitsOfShape.of_codomain_equivalence
CategoryTheory.AB5OfSize.ofShape
ab5OfSize
CategoryTheory.HasSeparator.of_equivalence
hasSeparator
wellPowered 📖mathematicalCategoryTheory.WellPowered
locallySmall
CategoryTheory.wellPowered_of_equiv
locallySmall
CategoryTheory.ShrinkHoms.isGrothendieckAbelian
CategoryTheory.HasSeparator.wellPowered
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.ShrinkHoms.hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
hasSeparator

CategoryTheory.ShrinkHoms

Theorems

NameKindAssumesProvesValidatesDepends On
isGrothendieckAbelian 📖mathematicalCategoryTheory.IsGrothendieckAbelian
CategoryTheory.ShrinkHoms
instCategory
CategoryTheory.IsGrothendieckAbelian.locallySmall
abelian
CategoryTheory.IsGrothendieckAbelian.of_equivalence
CategoryTheory.IsGrothendieckAbelian.locallySmall

---

← Back to Index