Documentation Verification Report

EnoughInjectives

📁 Source: Mathlib/CategoryTheory/Abelian/GrothendieckCategory/EnoughInjectives.lean

Statistics

MetricCount
DefinitionsEnoughInjectives, generatingMonomorphisms, functor, functorToMonoOver, largerSubobject, transfiniteCompositionOfShapeMapFromBot, transfiniteCompositionOfShapeOfEqTop, monoMapFactorizationDataRlp
8
TheoremsenoughInjectives, exists_larger_subobject, exists_ordinal, exists_pushouts, exists_transfiniteCompositionOfShape, functorToMonoOver_map, functorToMonoOver_obj, instIsWellOrderContinuousFunctor, largerSubobject_top, le_largerSubobject, lt_largerSubobject, pushouts_ofLE_le_largerSubobject, top_mem_range, generatingMonomorphisms_le_monomorphisms, generatingMonomorphisms_rlp, instHasFunctorialFactorizationMonomorphismsRlp, instHasSmallObjectArgumentGeneratingMonomorphisms, instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, instIsSmallGeneratingMonomorphismsOfSmallSubobject, instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, isomorphisms_le_pushouts_generatingMonomorphisms, llp_rlp_monomorphisms
22
Total30

CategoryTheory

Definitions

NameCategoryTheorems
EnoughInjectives 📖CompData
12 mathmath: Equivalence.enoughInjectives_iff, Injective.enoughInjectives_of_enoughProjectives_op, EnoughInjectives.of_equivalence, IsGrothendieckAbelian.enoughInjectives, instEnoughInjectivesModuleCatOfSmall, AddCommGrpCat.enoughInjectives, Injective.Type.enoughInjectives, CommGrpCat.enoughInjectives, Injective.instEnoughInjectivesOppositeOfEnoughProjectives, EnoughInjectives.of_adjunction, ModuleCat.enoughInjectives, instEnoughInjectivesModuleCatInt

CategoryTheory.IsGrothendieckAbelian

Definitions

NameCategoryTheorems
generatingMonomorphisms 📖CompOp
8 mathmath: isomorphisms_le_pushouts_generatingMonomorphisms, generatingMonomorphisms_le_monomorphisms, generatingMonomorphisms.exists_larger_subobject, generatingMonomorphisms.exists_transfiniteCompositionOfShape, generatingMonomorphisms_rlp, instIsSmallGeneratingMonomorphismsOfSmallSubobject, generatingMonomorphisms.pushouts_ofLE_le_largerSubobject, instHasSmallObjectArgumentGeneratingMonomorphisms
monoMapFactorizationDataRlp 📖CompOp
2 mathmath: instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp, instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom

Theorems

NameKindAssumesProvesValidatesDepends On
enoughInjectives 📖mathematicalCategoryTheory.EnoughInjectivesCategoryTheory.Abelian.hasZeroObject
instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom
instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp
generatingMonomorphisms_le_monomorphisms 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
generatingMonomorphisms
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.Subobject.arrow_mono
generatingMonomorphisms_rlp 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.MorphismProperty.rlp
generatingMonomorphisms
CategoryTheory.MorphismProperty.monomorphisms
le_antisymm
generatingMonomorphisms.exists_transfiniteCompositionOfShape
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le_llp_rlp
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.mem
CategoryTheory.MorphismProperty.rlp_pushouts
CategoryTheory.MorphismProperty.antitone_rlp
generatingMonomorphisms_le_monomorphisms
instHasFunctorialFactorizationMonomorphismsRlp 📖mathematicalCategoryTheory.MorphismProperty.HasFunctorialFactorization
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.MorphismProperty.rlp
hasSeparator
CategoryTheory.isSeparator_separator
generatingMonomorphisms_rlp
llp_rlp_monomorphisms
CategoryTheory.MorphismProperty.instHasFunctorialFactorizationLlpRlp
instHasSmallObjectArgumentGeneratingMonomorphisms
instHasSmallObjectArgumentGeneratingMonomorphisms 📖mathematicalCategoryTheory.MorphismProperty.HasSmallObjectArgument
generatingMonomorphisms
HasCardinalLT.exists_regular_cardinal
CategoryTheory.small_subobject
locallySmall
wellPowered
Cardinal.IsRegular.ne_zero
instIsSmallGeneratingMonomorphismsOfSmallSubobject
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
hasColimits
CategoryTheory.Limits.instHasIterationOfShapeOfHasColimitsOfSize
wellFoundedLT_toType
Order.le_succ
HomotopicalAlgebra.AttachCells.pushouts_coproducts
CategoryTheory.Abelian.instIsStableUnderCobaseChangeMonomorphisms
CategoryTheory.MorphismProperty.instIsStableUnderCoproductsMonomorphismsOfAB4OfSize
ab4OfSize
generatingMonomorphisms_le_monomorphisms
CategoryTheory.MorphismProperty.ofHoms_homFamily
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.mem_map
instIsStableUnderTransfiniteCompositionMonomorphisms
preservesColimit_coyoneda_obj_of_mono
CategoryTheory.instIsCardinalFilteredToTypeOrd
CategoryTheory.Subobject.hasCardinalLT_of_mono
CategoryTheory.Subobject.arrow_mono
instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom 📖mathematicalCategoryTheory.Injective
CategoryTheory.MorphismProperty.MapFactorizationData.Z
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.MorphismProperty.rlp
CategoryTheory.Limits.HasZeroObject.zero'
CategoryTheory.Abelian.hasZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
monoMapFactorizationDataRlp
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.IsZero.eq_of_tgt
CategoryTheory.Limits.isZero_zero
CategoryTheory.MorphismProperty.MapFactorizationData.hp
instIsSmallGeneratingMonomorphismsOfSmallSubobject 📖mathematicalCategoryTheory.MorphismProperty.IsSmall
generatingMonomorphisms
CategoryTheory.MorphismProperty.isSmall_ofHoms
instMonoIMonomorphismsRlpMonoMapFactorizationDataRlp 📖mathematicalCategoryTheory.Mono
CategoryTheory.MorphismProperty.MapFactorizationData.Z
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.MorphismProperty.rlp
monoMapFactorizationDataRlp
CategoryTheory.MorphismProperty.MapFactorizationData.i
CategoryTheory.MorphismProperty.MapFactorizationData.hi
isomorphisms_le_pushouts_generatingMonomorphisms 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.MorphismProperty.pushouts
generatingMonomorphisms
CategoryTheory.MorphismProperty.isomorphisms_le_pushouts
CategoryTheory.Subobject.isIso_top_arrow
llp_rlp_monomorphisms 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
CategoryTheory.MorphismProperty.monomorphisms
le_antisymm
generatingMonomorphisms_rlp
CategoryTheory.MorphismProperty.llp_rlp_of_hasSmallObjectArgument
instHasSmallObjectArgumentGeneratingMonomorphisms
CategoryTheory.MorphismProperty.retracts_monotone
CategoryTheory.MorphismProperty.transfiniteCompositions_monotone
CategoryTheory.MorphismProperty.pushouts_monotone
CategoryTheory.MorphismProperty.coproducts_monotone
generatingMonomorphisms_le_monomorphisms
CategoryTheory.MorphismProperty.coproducts_eq_self
CategoryTheory.MorphismProperty.instIsStableUnderCoproductsMonomorphismsOfAB4OfSize
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
hasColimits
ab4OfSize
CategoryTheory.MorphismProperty.IsStableUnderRetracts.monomorphisms
instIsStableUnderTransfiniteCompositionMonomorphisms
CategoryTheory.Abelian.instIsStableUnderCobaseChangeMonomorphisms
CategoryTheory.MorphismProperty.le_llp_rlp

CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms

Definitions

NameCategoryTheorems
functor 📖CompOp
1 mathmath: instIsWellOrderContinuousFunctor
functorToMonoOver 📖CompOp
2 mathmath: functorToMonoOver_map, functorToMonoOver_obj
largerSubobject 📖CompOp
8 mathmath: exists_ordinal, lt_largerSubobject, functorToMonoOver_map, top_mem_range, functorToMonoOver_obj, largerSubobject_top, pushouts_ofLE_le_largerSubobject, le_largerSubobject
transfiniteCompositionOfShapeMapFromBot 📖CompOp
transfiniteCompositionOfShapeOfEqTop 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_larger_subobject 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.MorphismProperty.pushouts
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Subobject.ofLE
LT.lt.le
CategoryTheory.Subobject.ind
LT.lt.le
exists_pushouts
CategoryTheory.Subobject.mk_lt_mk_of_comm
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.instRespectsIsoPushouts
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Subobject.ofLE_arrow
exists_ordinal 📖mathematicalCategoryTheory.IsSeparatortransfiniteIterate
CategoryTheory.Subobject
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Subobject.instCompleteLattice
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
largerSubobject
Ordinal.ToType
linearOrder_toType
Ordinal.instSuccOrderToType
wellFoundedLT_toType
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.orderTop
CategoryTheory.small_subobject
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
Cardinal.succ_ne_zero
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
wellFoundedLT_toType
top_mem_range
lt_of_lt_of_le
Order.lt_succ
Cardinal.instNoMaxOrder
Cardinal.mk_toType
Cardinal.card_ord
Cardinal.lift_succ
Cardinal.lift_mk_shrink'
exists_pushouts 📖mathematicalCategoryTheory.IsSeparator
CategoryTheory.IsIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.IsDetecting.isIso_iff_of_mono
CategoryTheory.IsSeparator.isDetector
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.pullback.snd_of_mono
CategoryTheory.IsPushout.of_iso
CategoryTheory.IsPushout.of_hasPushout
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Subobject.underlyingIso_arrow
CategoryTheory.Category.id_comp
CategoryTheory.isIso_iff_yoneda_map_bijective
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.eq_whisker
CategoryTheory.IsPushout.mono_of_isPullback_of_mono
CategoryTheory.IsPullback.of_hasPullback
exists_transfiniteCompositionOfShape 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.MorphismProperty.TransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.pushouts
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
wellFoundedLT_toType
exists_ordinal
Set.ordConnected_Iic
Subtype.wellFoundedLT
functorToMonoOver_map 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
functorToMonoOver
CategoryTheory.MonoOver.homMk
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
transfiniteIterate
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Subobject.instCompleteLattice
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
largerSubobject
CategoryTheory.Subobject.arrow
CategoryTheory.Subobject.ofLE
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
functorToMonoOver_obj 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
functorToMonoOver
CategoryTheory.Subobject
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
transfiniteIterate
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Subobject.instCompleteLattice
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
largerSubobject
CategoryTheory.Subobject.arrow
instIsWellOrderContinuousFunctor 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.Functor.IsWellOrderContinuous
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
functor
PrincipalSeg.monotone
Set.Nonempty.to_subtype
Order.IsSuccLimit.nonempty_Iio
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
CategoryTheory.Subobject.arrow_mono
CategoryTheory.isFiltered_of_directed_le_nonempty
SemilatticeSup.instIsDirectedOrder
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.MonoOver.mono
CategoryTheory.Subobject.mk_arrow
transfiniteIterate_limit
largerSubobject_top 📖mathematicalCategoryTheory.IsSeparatorlargerSubobject
Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.orderTop
exists_larger_subobject
le_largerSubobject 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
largerSubobject
largerSubobject_top
LT.lt.le
lt_largerSubobject
lt_largerSubobject 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.Subobject
Preorder.toLT
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
largerSubobject
exists_larger_subobject
LT.lt.le
pushouts_ofLE_le_largerSubobject 📖mathematicalCategoryTheory.IsSeparatorCategoryTheory.MorphismProperty.pushouts
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
largerSubobject
CategoryTheory.Subobject.ofLE
le_largerSubobject
le_largerSubobject
CategoryTheory.Subobject.isIso_arrow_iff_eq_top
largerSubobject_top
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.instRespectsIsoPushouts
CategoryTheory.Subobject.isIso_top_arrow
CategoryTheory.Category.comp_id
CategoryTheory.Subobject.ofLE_arrow
CategoryTheory.IsGrothendieckAbelian.isomorphisms_le_pushouts_generatingMonomorphisms
CategoryTheory.MorphismProperty.isomorphisms.infer_property
CategoryTheory.IsIso.id
LT.lt.le
exists_larger_subobject
LE.le.trans
CategoryTheory.Category.id_comp
CategoryTheory.Subobject.ofLE_comp_ofLE
top_mem_range 📖mathematicalCategoryTheory.IsSeparator
HasCardinalLT
CategoryTheory.Subobject
transfiniteIterate
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Subobject.instCompleteLattice
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
largerSubobject
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.orderTop
top_mem_range_transfiniteIterate
CategoryTheory.IsGrothendieckAbelian.locallySmall
CategoryTheory.IsGrothendieckAbelian.wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
lt_largerSubobject
largerSubobject_top
HasCardinalLT.of_injective

---

← Back to Index