Documentation Verification Report

Subobject

📁 Source: Mathlib/CategoryTheory/Abelian/GrothendieckCategory/Subobject.lean

Statistics

MetricCount
DefinitionsisColimitMapCoconeOfSubobjectMkEqISup
1
Theoremsexists_isIso_of_functor_from_monoOver, mono_of_isColimit_monoOver, subobjectMk_of_isColimit_eq_iSup
3
Total4

CategoryTheory.IsGrothendieckAbelian

Definitions

NameCategoryTheorems
isColimitMapCoconeOfSubobjectMkEqISup 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isIso_of_functor_from_monoOver 📖mathematicalHasCardinalLT
CategoryTheory.Subobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.MonoOver.forget
CategoryTheory.Over.forget
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.IsIso
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.isFiltered_of_isCardinalFiltered
mono_of_isColimit_monoOver
CategoryTheory.MonoOver.mono
Function.Surjective.hasRightInverse
HasCardinalLT.of_injective
Subtype.val_injective
CategoryTheory.Subobject.isIso_iff_mk_eq_top
top_le_iff
locallySmall
wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
subobjectMk_of_isColimit_eq_iSup
CategoryTheory.Subobject.epi_iff_mk_eq_top
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
iSup_le_iff
Eq.le
CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom
mono_of_isColimit_monoOver 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.MonoOver.forget
CategoryTheory.Over.forget
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoCategoryTheory.Over.w
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.mono_of_mono_app
CategoryTheory.MonoOver.mono
CategoryTheory.Limits.colim.map_mono'
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
hasFilteredColimitsOfSize
CategoryTheory.Functor.instPreservesMonomorphisms
CategoryTheory.Limits.HasZeroObject.instFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.preservesZeroMorphisms_of_preserves_terminal_object
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.HasExactColimitsOfShape.preservesFiniteLimits
CategoryTheory.AB5OfSize.ofShape
ab5OfSize
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Adjunction.colim_preservesColimits
CategoryTheory.IsFiltered.isConnected
subobjectMk_of_isColimit_eq_iSup 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.MonoOver.forget
CategoryTheory.Over.forget
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
mono_of_isColimit_monoOver
iSup
CategoryTheory.Subobject
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Subobject.instCompleteLattice
locallySmall
wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Comma.left
CategoryTheory.MonoOver.mono
le_antisymm
mono_of_isColimit_monoOver
locallySmall
wellPowered
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
hasLimits
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
hasColimits
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.MonoOver.mono
le_iSup_iff
CategoryTheory.Subobject.ind
CategoryTheory.Category.comp_id
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Subobject.ofMkLEMk_comp
CategoryTheory.MonoOver.w
CategoryTheory.Subobject.mk_le_mk_of_comm
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.fac_assoc
iSup_le_iff

---

← Back to Index