Documentation Verification Report

Images

📁 Source: Mathlib/CategoryTheory/Abelian/Images.lean

Statistics

MetricCount
Definitionscoimage, π, coimageImageComparison, coimageImageComparison', coimageImageComparisonFunctor, factorThruCoimage, factorThruImage, image, ι
9
Theoremsfac, coimageImageComparisonFunctor_map, coimageImageComparisonFunctor_obj, coimageImageComparison_eq_coimageImageComparison', coimage_image_factorisation, coimage_image_factorisation_assoc, epi_factorThruCoimage, fac, mono_factorThruImage
9
Total18

CategoryTheory.Abelian

Definitions

NameCategoryTheorems
coimage 📖CompOp
45 mathmath: FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, PreservesCoimage.iso_hom_π_assoc, PreservesCoimageImageComparison.iso_inv_left, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, coimage_image_factorisation, coim_map, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, FunctorCategory.coimageImageComparison_app, PreservesCoimageImageComparison.iso_hom_left, epi_factorThruCoimage, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, PreservesCoimageImageComparison.iso_hom_right, instMonoFactorThruCoimage, coimageStrongEpiMonoFactorisation_I, PreservesCoimage.factorThruCoimage_iso_inv, CategoryTheory.instIsIsoIndCoimageImageComparison, PreservesCoimage.factorThruCoimage_iso_hom_assoc, PreservesCoimage.factorThruCoimage_iso_inv_assoc, factorThruImage_comp_coimageIsoImage'_inv, coim_obj, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, coimageImageComparisonFunctor_obj, PreservesCoimage.iso_inv_π, coimage.fac, coimage_image_factorisation_assoc, PreservesCoimage.factorThruCoimage_iso_hom, PreservesCoimageImageComparison.iso_inv_right, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, coimageImageComparisonFunctor_map, coimage.comp_π_eq_zero, coimageIsoImage'_hom, FunctorCategory.coimageObjIso_inv, PreservesCoimage.hom_coimageImageComparison, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, FunctorCategory.functor_category_isIso_coimageImageComparison, PreservesCoimage.iso_inv_π_assoc, instIsIsoCoimageImageComparison, FunctorCategory.coimageObjIso_hom, isIso_factorThruCoimage, comp_coimage_π_eq_zero, coimIsoIm_inv_app, PreservesCoimage.iso_hom_π, FGModuleCat.instIsIsoCoimageImageComparison
coimageImageComparison 📖CompOp
19 mathmath: FunctorCategory.coimageImageComparison_app', PreservesCoimageImageComparison.iso_inv_left, coimage_image_factorisation, FunctorCategory.coimageImageComparison_app, PreservesCoimageImageComparison.iso_hom_left, coimageImageComparison_eq_coimageImageComparison', PreservesCoimageImageComparison.iso_hom_right, CategoryTheory.instIsIsoIndCoimageImageComparison, coimageImageComparisonFunctor_obj, OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', coimage_image_factorisation_assoc, PreservesCoimageImageComparison.iso_inv_right, coimageImageComparisonFunctor_map, PreservesCoimage.hom_coimageImageComparison, FunctorCategory.functor_category_isIso_coimageImageComparison, instIsIsoCoimageImageComparison, coimIsoIm_hom_app, coimIsoIm_inv_app, FGModuleCat.instIsIsoCoimageImageComparison
coimageImageComparison' 📖CompOp
1 mathmath: coimageImageComparison_eq_coimageImageComparison'
coimageImageComparisonFunctor 📖CompOp
2 mathmath: coimageImageComparisonFunctor_obj, coimageImageComparisonFunctor_map
factorThruCoimage 📖CompOp
11 mathmath: CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, epi_factorThruCoimage, instMonoFactorThruCoimage, PreservesCoimage.factorThruCoimage_iso_inv, PreservesCoimage.factorThruCoimage_iso_hom_assoc, PreservesCoimage.factorThruCoimage_iso_inv_assoc, coimage.fac, PreservesCoimage.factorThruCoimage_iso_hom, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, isIso_factorThruCoimage, coimageStrongEpiMonoFactorisation_m
factorThruImage 📖CompOp
11 mathmath: imageStrongEpiMonoFactorisation_e, image.fac, PreservesImage.factorThruImage_iso_hom, instEpiFactorThruImage, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, PreservesImage.factorThruImage_iso_hom_assoc, mono_factorThruImage, PreservesImage.factorThruImage_iso_inv, PreservesImage.factorThruImage_iso_inv_assoc, isIso_factorThruImage, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage
image 📖CompOp
48 mathmath: FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, PreservesCoimageImageComparison.iso_inv_left, image.fac, OfCoimageImageComparisonIsIso.imageMonoFactorisation_I, coimage_image_factorisation, PreservesImage.factorThruImage_iso_hom, instEpiFactorThruImage, FunctorCategory.coimageImageComparison_app, PreservesCoimageImageComparison.iso_hom_left, im_map, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, image_ι_comp_eq_zero, PreservesCoimageImageComparison.iso_hom_right, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, PreservesImage.iso_hom_ι, PreservesImage.factorThruImage_iso_hom_assoc, imageIsoImage_inv, CategoryTheory.instIsIsoIndCoimageImageComparison, PreservesImage.iso_inv_ι_assoc, coimageImageComparisonFunctor_obj, OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', PreservesImage.iso_hom_ι_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, coimage_image_factorisation_assoc, mono_factorThruImage, PreservesCoimageImageComparison.iso_inv_right, im_obj, PreservesImage.iso_inv_ι, coimageImageComparisonFunctor_map, imageIsoImage_hom_comp_image_ι, PreservesCoimage.hom_coimageImageComparison, PreservesImage.factorThruImage_iso_inv, image.ι_comp_eq_zero, PreservesImage.factorThruImage_iso_inv_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, imageStrongEpiMonoFactorisation_I, FunctorCategory.imageObjIso_hom, FunctorCategory.functor_category_isIso_coimageImageComparison, isIso_factorThruImage, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage, instIsIsoCoimageImageComparison, FunctorCategory.imageObjIso_inv, coimIsoIm_inv_app, FGModuleCat.instIsIsoCoimageImageComparison

Theorems

NameKindAssumesProvesValidatesDepends On
coimageImageComparisonFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coimageImageComparisonFunctor
CategoryTheory.Arrow.homMk
coimage
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
image
coimageImageComparison
CategoryTheory.Limits.cokernel.map
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.kernel.map
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.π
coimageImageComparisonFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
coimageImageComparisonFunctor
coimage
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
image
coimageImageComparison
coimageImageComparison_eq_coimageImageComparison' 📖mathematicalcoimageImageComparison
coimageImageComparison'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Category.assoc
coimage_image_factorisation 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coimage
coimage.π
image
coimageImageComparison
image.ι
CategoryTheory.Limits.cokernel.π_desc_assoc
CategoryTheory.Limits.kernel.lift_ι
coimage_image_factorisation_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coimage
coimage.π
image
coimageImageComparison
image.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coimage_image_factorisation
epi_factorThruCoimage 📖mathematicalCategoryTheory.Epi
coimage
factorThruCoimage
CategoryTheory.epi_of_epi_fac
coimage.fac
mono_factorThruImage 📖mathematicalCategoryTheory.Mono
image
factorThruImage
CategoryTheory.mono_of_mono_fac
image.fac

CategoryTheory.Abelian.coimage

Definitions

NameCategoryTheorems
π 📖CompOp
14 mathmath: CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, CategoryTheory.Abelian.PreservesCoimage.iso_hom_π_assoc, CategoryTheory.Abelian.coimage_image_factorisation, CategoryTheory.Abelian.coim_map, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_e, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Abelian.PreservesCoimage.iso_inv_π, fac, CategoryTheory.Abelian.coimage_image_factorisation_assoc, comp_π_eq_zero, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, CategoryTheory.Abelian.PreservesCoimage.iso_inv_π_assoc, CategoryTheory.Abelian.comp_coimage_π_eq_zero, CategoryTheory.Abelian.PreservesCoimage.iso_hom_π

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.coimage
π
CategoryTheory.Abelian.factorThruCoimage
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.kernel.condition

CategoryTheory.Abelian.image

Definitions

NameCategoryTheorems
ι 📖CompOp
14 mathmath: CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, fac, CategoryTheory.Abelian.coimage_image_factorisation, CategoryTheory.Abelian.im_map, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, CategoryTheory.Abelian.image_ι_comp_eq_zero, CategoryTheory.Abelian.PreservesImage.iso_hom_ι, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_m, CategoryTheory.Abelian.PreservesImage.iso_inv_ι_assoc, CategoryTheory.Abelian.PreservesImage.iso_hom_ι_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, CategoryTheory.Abelian.coimage_image_factorisation_assoc, CategoryTheory.Abelian.PreservesImage.iso_inv_ι, ι_comp_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Abelian.image
CategoryTheory.Abelian.factorThruImage
ι
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Limits.cokernel.condition

---

← Back to Index