| Name | Category | Theorems |
coimage 📖 | CompOp | 45 mathmath: FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage_assoc, PreservesCoimage.iso_hom_π_assoc, PreservesCoimageImageComparison.iso_inv_left, CategoryTheory.ShortComplex.LeftHomologyData.ofAbelian_H, coimage_image_factorisation, coim_map, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, FunctorCategory.coimageImageComparison_app, PreservesCoimageImageComparison.iso_hom_left, epi_factorThruCoimage, CategoryTheory.ShortComplex.cokernel_π_comp_cokernelToAbelianCoimage, PreservesCoimageImageComparison.iso_hom_right, instMonoFactorThruCoimage, coimageStrongEpiMonoFactorisation_I, PreservesCoimage.factorThruCoimage_iso_inv, CategoryTheory.instIsIsoIndCoimageImageComparison, PreservesCoimage.factorThruCoimage_iso_hom_assoc, PreservesCoimage.factorThruCoimage_iso_inv_assoc, factorThruImage_comp_coimageIsoImage'_inv, coim_obj, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, coimageImageComparisonFunctor_obj, PreservesCoimage.iso_inv_π, coimage.fac, coimage_image_factorisation_assoc, PreservesCoimage.factorThruCoimage_iso_hom, PreservesCoimageImageComparison.iso_inv_right, CategoryTheory.ShortComplex.instEpiCokernelToAbelianCoimage, coimageImageComparisonFunctor_map, coimage.comp_π_eq_zero, coimageIsoImage'_hom, FunctorCategory.coimageObjIso_inv, PreservesCoimage.hom_coimageImageComparison, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, CategoryTheory.ShortComplex.exact_iff_exact_coimage_π, FunctorCategory.functor_category_isIso_coimageImageComparison, PreservesCoimage.iso_inv_π_assoc, instIsIsoCoimageImageComparison, FunctorCategory.coimageObjIso_hom, isIso_factorThruCoimage, comp_coimage_π_eq_zero, coimIsoIm_inv_app, PreservesCoimage.iso_hom_π, FGModuleCat.instIsIsoCoimageImageComparison
|
coimageImageComparison 📖 | CompOp | 19 mathmath: FunctorCategory.coimageImageComparison_app', PreservesCoimageImageComparison.iso_inv_left, coimage_image_factorisation, FunctorCategory.coimageImageComparison_app, PreservesCoimageImageComparison.iso_hom_left, coimageImageComparison_eq_coimageImageComparison', PreservesCoimageImageComparison.iso_hom_right, CategoryTheory.instIsIsoIndCoimageImageComparison, coimageImageComparisonFunctor_obj, OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', coimage_image_factorisation_assoc, PreservesCoimageImageComparison.iso_inv_right, coimageImageComparisonFunctor_map, PreservesCoimage.hom_coimageImageComparison, FunctorCategory.functor_category_isIso_coimageImageComparison, instIsIsoCoimageImageComparison, coimIsoIm_hom_app, coimIsoIm_inv_app, FGModuleCat.instIsIsoCoimageImageComparison
|
coimageImageComparison' 📖 | CompOp | 1 mathmath: coimageImageComparison_eq_coimageImageComparison'
|
coimageImageComparisonFunctor 📖 | CompOp | 2 mathmath: coimageImageComparisonFunctor_obj, coimageImageComparisonFunctor_map
|
factorThruCoimage 📖 | CompOp | 11 mathmath: CategoryTheory.NonPreadditiveAbelian.isIso_factorThruCoimage, epi_factorThruCoimage, instMonoFactorThruCoimage, PreservesCoimage.factorThruCoimage_iso_inv, PreservesCoimage.factorThruCoimage_iso_hom_assoc, PreservesCoimage.factorThruCoimage_iso_inv_assoc, coimage.fac, PreservesCoimage.factorThruCoimage_iso_hom, CategoryTheory.NonPreadditiveAbelian.instMonoFactorThruCoimage, isIso_factorThruCoimage, coimageStrongEpiMonoFactorisation_m
|
factorThruImage 📖 | CompOp | 11 mathmath: imageStrongEpiMonoFactorisation_e, image.fac, PreservesImage.factorThruImage_iso_hom, instEpiFactorThruImage, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, PreservesImage.factorThruImage_iso_hom_assoc, mono_factorThruImage, PreservesImage.factorThruImage_iso_inv, PreservesImage.factorThruImage_iso_inv_assoc, isIso_factorThruImage, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage
|
image 📖 | CompOp | 48 mathmath: FunctorCategory.coimageImageComparison_app', CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.ShortComplex.RightHomologyData.ofAbelian_H, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι, PreservesCoimageImageComparison.iso_inv_left, image.fac, OfCoimageImageComparisonIsIso.imageMonoFactorisation_I, coimage_image_factorisation, PreservesImage.factorThruImage_iso_hom, instEpiFactorThruImage, FunctorCategory.coimageImageComparison_app, PreservesCoimageImageComparison.iso_hom_left, im_map, CategoryTheory.ShortComplex.exact_iff_exact_image_ι, image_ι_comp_eq_zero, PreservesCoimageImageComparison.iso_hom_right, CategoryTheory.NonPreadditiveAbelian.instEpiFactorThruImage, CategoryTheory.ShortComplex.instMonoAbelianImageToKernel, PreservesImage.iso_hom_ι, PreservesImage.factorThruImage_iso_hom_assoc, imageIsoImage_inv, CategoryTheory.instIsIsoIndCoimageImageComparison, PreservesImage.iso_inv_ι_assoc, coimageImageComparisonFunctor_obj, OfCoimageImageComparisonIsIso.imageMonoFactorisation_e', PreservesImage.iso_hom_ι_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_assoc, coimage_image_factorisation_assoc, mono_factorThruImage, PreservesCoimageImageComparison.iso_inv_right, im_obj, PreservesImage.iso_inv_ι, coimageImageComparisonFunctor_map, imageIsoImage_hom_comp_image_ι, PreservesCoimage.hom_coimageImageComparison, PreservesImage.factorThruImage_iso_inv, image.ι_comp_eq_zero, PreservesImage.factorThruImage_iso_inv_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, imageStrongEpiMonoFactorisation_I, FunctorCategory.imageObjIso_hom, FunctorCategory.functor_category_isIso_coimageImageComparison, isIso_factorThruImage, CategoryTheory.NonPreadditiveAbelian.isIso_factorThruImage, instIsIsoCoimageImageComparison, FunctorCategory.imageObjIso_inv, coimIsoIm_inv_app, FGModuleCat.instIsIsoCoimageImageComparison
|