📁 Source: Mathlib/CategoryTheory/Abelian/Injective/Basic.lean
injective_of_preservesFiniteColimits_preadditiveYonedaObj
preservesFiniteColimits_preadditiveYonedaObj_of_injective
preservesHomology_preadditiveYonedaObj_of_injective
Injective
Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj'
Functor.preservesZeroMorphisms_of_additive
additive_yonedaObj
Functor.preservesHomologyOfExact
Limits.PreservesLimits.preservesFiniteLimits
preservesLimits_preadditiveYonedaObj
Functor.instPreservesEpimorphisms
Limits.hasZeroObject_op
Abelian.hasZeroObject
ModuleCat.instHasZeroObject
Limits.PreservesFiniteColimits
Opposite
Category.opposite
ModuleCat
End
Category.toCategoryStruct
Preadditive.instRingEnd
Abelian.toPreadditive
ModuleCat.moduleCategory
preadditiveYonedaObj
Functor.preservesFiniteColimits_of_preservesHomology
Limits.hasFiniteCoproducts_of_hasFiniteColimits
Limits.hasFiniteColimits_opposite
Abelian.hasFiniteLimits
Abelian.has_cokernels
Functor.PreservesHomology
Limits.hasZeroMorphismsOpposite
Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
instPreadditiveOpposite
Functor.preservesHomology_of_preservesEpis_and_kernels
Limits.PreservesLimitsOfShape.preservesLimit
Limits.PreservesFiniteLimits.preservesFiniteLimits
---
← Back to Index