Documentation Verification Report

Ext

šŸ“ Source: Mathlib/CategoryTheory/Abelian/Injective/Ext.lean

Statistics

MetricCount
DefinitionsextAddEquivCohomologyClass, extEquivCohomologyClass, extMk
3
Theoremsadd_extMk, extAddEquivCohomologyClass_apply, extAddEquivCohomologyClass_symm_apply, extEquivCohomologyClass_add, extEquivCohomologyClass_extMk, extEquivCohomologyClass_neg, extEquivCohomologyClass_sub, extEquivCohomologyClass_symm_add, extEquivCohomologyClass_symm_mk_hom, extEquivCohomologyClass_symm_neg, extEquivCohomologyClass_symm_sub, extEquivCohomologyClass_symm_zero, extEquivCohomologyClass_zero, extMk_comp_mkā‚€, extMk_eq_zero_iff, extMk_hom, extMk_surjective, extMk_zero, instIsKInjectiveCochainComplex, mkā‚€_comp_extMk, neg_extMk, sub_extMk
22
Total25

CategoryTheory.InjectiveResolution

Definitions

NameCategoryTheorems
extAddEquivCohomologyClass šŸ“–CompOp
2 mathmath: extAddEquivCohomologyClass_symm_apply, extAddEquivCohomologyClass_apply
extEquivCohomologyClass šŸ“–CompOp
12 mathmath: extEquivCohomologyClass_symm_neg, extEquivCohomologyClass_symm_add, extEquivCohomologyClass_symm_sub, extEquivCohomologyClass_sub, extEquivCohomologyClass_neg, extEquivCohomologyClass_symm_zero, extEquivCohomologyClass_add, extEquivCohomologyClass_zero, extEquivCohomologyClass_extMk, extEquivCohomologyClass_symm_mk_hom, extAddEquivCohomologyClass_symm_apply, extAddEquivCohomologyClass_apply
extMk šŸ“–CompOp
10 mathmath: extMk_comp_mkā‚€, extMk_surjective, add_extMk, extMk_zero, extMk_eq_zero_iff, sub_extMk, mkā‚€_comp_extMk, extMk_hom, neg_extMk, extEquivCohomologyClass_extMk

Theorems

NameKindAssumesProvesValidatesDepends On
add_extMk šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
extMk
CategoryTheory.Preadditive.homGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Preadditive.add_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
cochainComplex_d
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk_add
extEquivCohomologyClass_symm_add
extAddEquivCohomologyClass_apply šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
EquivLike.toFunLike
AddEquiv.instEquivLike
extAddEquivCohomologyClass
Equiv
Equiv.instEquivLike
extEquivCohomologyClass
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
extAddEquivCohomologyClass_symm_apply šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
AddEquiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
CategoryTheory.Abelian.Ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
CategoryTheory.Abelian.Ext.instAddCommGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
extAddEquivCohomologyClass
Equiv
Equiv.instEquivLike
Equiv.symm
extEquivCohomologyClass
—CategoryTheory.Abelian.hasZeroObject
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
extEquivCohomologyClass_add šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
EquivLike.toFunLike
Equiv.instEquivLike
extEquivCohomologyClass
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
—CategoryTheory.Abelian.hasZeroObject
AddEquiv.map_add
AddRightCancelSemigroup.toIsRightCancelAdd
extEquivCohomologyClass_extMk šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
DFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Functor.obj
CochainComplex
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
CochainComplex.singleFunctor
cochainComplex
EquivLike.toFunLike
Equiv.instEquivLike
extEquivCohomologyClass
extMk
CochainComplex.HomComplex.Cocycle.fromSingleMk
CategoryTheory.Iso.inv
cochainComplexXIso
zero_add
AddMonoid.toAddZeroClass
Int.instAddMonoid
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
zero_add
Equiv.apply_symm_apply
extEquivCohomologyClass_neg šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
EquivLike.toFunLike
Equiv.instEquivLike
extEquivCohomologyClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
—CategoryTheory.Abelian.hasZeroObject
AddEquiv.map_neg
AddRightCancelSemigroup.toIsRightCancelAdd
extEquivCohomologyClass_sub šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
EquivLike.toFunLike
Equiv.instEquivLike
extEquivCohomologyClass
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Abelian.Ext.instAddCommGroup
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
—CategoryTheory.Abelian.hasZeroObject
AddEquiv.map_sub
AddRightCancelSemigroup.toIsRightCancelAdd
extEquivCohomologyClass_symm_add šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
CategoryTheory.Abelian.Ext
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
extEquivCohomologyClass
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
CategoryTheory.Abelian.Ext.instAddCommGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.HomComplex.CohomologyClass.mk_surjective
CategoryTheory.Abelian.Ext.ext
DerivedCategory.instIsIsoMapCochainComplexIntQ
instQuasiIsoIntι'
zero_add
add_zero
extEquivCohomologyClass_symm_mk_hom
CategoryTheory.ShiftedHom.comp.congr_simp
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
CategoryTheory.Functor.map_add
DerivedCategory.instAdditiveCochainComplexIntQ
CategoryTheory.Preadditive.add_comp
CategoryTheory.ShiftedHom.add_comp
CategoryTheory.ShiftedHom.comp_add
DerivedCategory.instAdditiveShiftFunctorInt
CategoryTheory.Abelian.Ext.add_hom
extEquivCohomologyClass_symm_mk_hom šŸ“–mathematicalCategoryTheory.HasExtCategoryTheory.Abelian.Ext.hom
DFunLike.coe
Equiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
CategoryTheory.Abelian.Ext
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
extEquivCohomologyClass
CategoryTheory.ShiftedHom.comp
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
DerivedCategory.singleFunctor
CategoryTheory.Functor.comp
DerivedCategory.Q
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.ShiftedHom.mkā‚€
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
DerivedCategory.singleFunctorIsoCompQ
CategoryTheory.ShiftedHom.map
CochainComplex.instHasShiftInt
AddEquiv
CochainComplex.HomComplex.Cocycle
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CochainComplex.HomComplex.instAddCommGroupCocycle
HomologicalComplex.instAddHom
AddEquiv.instEquivLike
AddEquiv.symm
CochainComplex.HomComplex.Cocycle.equivHomShift
DerivedCategory.instCommShiftCochainComplexIntQ
CategoryTheory.CategoryStruct.comp
CategoryTheory.inv
CategoryTheory.Functor.map
ι'
DerivedCategory.instIsIsoMapCochainComplexIntQ
instQuasiIsoIntι'
CategoryTheory.Iso.inv
zero_add
add_zero
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
DerivedCategory.instIsIsoMapCochainComplexIntQ
instQuasiIsoIntι'
zero_add
add_zero
CategoryTheory.categoryWithHomology_of_abelian
DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp
CochainComplex.instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso
CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CochainComplex.instIsStrictlyGEObjIntSingleFunctor
CochainComplex.instIsStrictlyLEObjIntSingleFunctor
instIsStrictlyGECochainComplexOfNatInt_1
instIsLECochainComplexOfNatInt
CategoryTheory.Localization.inverts
CategoryTheory.Localization.SmallShiftedHom.equiv_comp
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.Localization.SmallShiftedHom.equiv_mkā‚€Inv
CategoryTheory.ShiftedHom.mkā‚€_id_comp
CategoryTheory.IsIso.hom_inv_id
extEquivCohomologyClass_symm_neg šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
CategoryTheory.Abelian.Ext
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
extEquivCohomologyClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
CategoryTheory.Abelian.Ext.instAddCommGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
AddEquiv.map_neg
extEquivCohomologyClass_symm_sub šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
CategoryTheory.Abelian.Ext
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
extEquivCohomologyClass
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
CategoryTheory.Abelian.Ext.instAddCommGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
AddEquiv.map_sub
extEquivCohomologyClass_symm_zero šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
CategoryTheory.Abelian.Ext
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
extEquivCohomologyClass
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
CategoryTheory.Abelian.Ext.instAddCommGroup
—CategoryTheory.Abelian.hasZeroObject
AddEquiv.map_zero
AddRightCancelSemigroup.toIsRightCancelAdd
extEquivCohomologyClass_zero šŸ“–mathematicalCategoryTheory.HasExtDFunLike.coe
Equiv
CategoryTheory.Abelian.Ext
CochainComplex.HomComplex.CohomologyClass
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
EquivLike.toFunLike
Equiv.instEquivLike
extEquivCohomologyClass
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
CochainComplex.HomComplex.instAddCommGroupCohomologyClass
—CategoryTheory.Abelian.hasZeroObject
AddEquiv.map_zero
AddRightCancelSemigroup.toIsRightCancelAdd
extMk_comp_mkā‚€ šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext.comp
extMk
CategoryTheory.Abelian.Ext.mkā‚€
add_zero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
HomologicalComplex.Hom.f
Hom.hom
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.Ext.ext
add_zero
CategoryTheory.Category.assoc
Hom.hom'_f
CategoryTheory.Iso.inv_hom_id_assoc
zero_add
DerivedCategory.instIsIsoMapCochainComplexIntQ
instQuasiIsoIntι'
CategoryTheory.Abelian.Ext.comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
extMk_hom
CategoryTheory.Abelian.Ext.mkā‚€_hom
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
cochainComplex_d
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk_postcomp
CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp
CategoryTheory.ShiftedHom.comp_mkā‚€
CategoryTheory.ShiftedHom.map_comp
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
CategoryTheory.ShiftedHom.comp_assoc
CategoryTheory.ShiftedHom.map_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.congr_map
Hom.ι'_comp_hom'
extMk_eq_zero_iff šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
extMk
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
zero_add
Equiv.apply_eq_iff_eq
extEquivCohomologyClass_extMk
extEquivCohomologyClass_zero
CochainComplex.HomComplex.Cocycle.fromSingleMk_mem_coboundaries_iff
cochainComplex_d
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
extMk_hom šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext.hom
extMk
CategoryTheory.ShiftedHom.comp
DerivedCategory
DerivedCategory.instCategory
Int.instAddMonoid
DerivedCategory.instHasShiftInt
CategoryTheory.Functor.obj
DerivedCategory.singleFunctor
CategoryTheory.Functor.comp
CochainComplex
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
CochainComplex.singleFunctor
DerivedCategory.Q
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.ShiftedHom.mkā‚€
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
DerivedCategory.singleFunctorIsoCompQ
cochainComplex
CategoryTheory.ShiftedHom.map
CochainComplex.instHasShiftInt
DFunLike.coe
AddEquiv
CochainComplex.HomComplex.Cocycle
CategoryTheory.shiftFunctor
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CochainComplex.HomComplex.instAddCommGroupCocycle
HomologicalComplex.instAddHom
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
CochainComplex.HomComplex.Cocycle.equivHomShift
CochainComplex.HomComplex.Cocycle.fromSingleMk
CategoryTheory.Iso.inv
cochainComplexXIso
zero_add
DerivedCategory.instCommShiftCochainComplexIntQ
CategoryTheory.inv
CategoryTheory.Functor.map
ι'
DerivedCategory.instIsIsoMapCochainComplexIntQ
instQuasiIsoIntι'
add_zero
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
extEquivCohomologyClass_symm_mk_hom
extMk_surjective šŸ“–mathematicalCategoryTheory.HasExtextMk—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
Equiv.surjective
CochainComplex.HomComplex.CohomologyClass.mk_surjective
zero_add
CochainComplex.HomComplex.Cocycle.fromSingleMk_surjective
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.zero_comp
cochainComplex_d
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
extMk_zero šŸ“–mathematicalCategoryTheory.HasExtextMk
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.zero_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
CochainComplex.HomComplex.Cocycle.fromSingleMk_zero
extEquivCohomologyClass_symm_zero
instIsKInjectiveCochainComplex šŸ“–mathematical—CochainComplex.IsKInjective
cochainComplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Abelian.toPreadditive
—CategoryTheory.Abelian.hasZeroObject
CochainComplex.isKInjective_of_injective
instIsStrictlyGECochainComplexOfNatInt_1
instInjectiveXIntCochainComplex
mkā‚€_comp_extMk šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext.comp
CategoryTheory.Abelian.Ext.mkā‚€
extMk
zero_add
AddMonoid.toAddZeroClass
Nat.instAddMonoid
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.Ext.ext
zero_add
DerivedCategory.instIsIsoMapCochainComplexIntQ
instQuasiIsoIntι'
add_zero
CategoryTheory.Category.assoc
CategoryTheory.Abelian.Ext.comp_hom
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.Abelian.Ext.mkā‚€_hom
extEquivCohomologyClass_symm_mk_hom
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
cochainComplex_d
CategoryTheory.Iso.inv_hom_id_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk_precomp
CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp
CategoryTheory.ShiftedHom.mkā‚€_comp
CategoryTheory.ShiftedHom.map_comp
CategoryTheory.ShiftedHom.comp_assoc
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€.congr_simp
CategoryTheory.NatTrans.naturality
CategoryTheory.ShiftedHom.map_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€_assoc
neg_extMk šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
extMk
CategoryTheory.Preadditive.homGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Preadditive.neg_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
cochainComplex_d
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk_neg
extEquivCohomologyClass_symm_neg
sub_extMk šŸ“–mathematicalCategoryTheory.HasExt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Abelian.Ext
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Abelian.Ext.instAddCommGroup
extMk
CategoryTheory.Preadditive.homGroup
—CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Preadditive.sub_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk.congr_simp
cochainComplex_d
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CochainComplex.HomComplex.Cocycle.fromSingleMk_sub
extEquivCohomologyClass_symm_sub

---

← Back to Index