Documentation Verification Report

Extend

📁 Source: Mathlib/CategoryTheory/Abelian/Injective/Extend.lean

Statistics

MetricCount
Definitionshom', cochainComplex, cochainComplexXIso, ι'
4
Theoremshom'_f, hom'_f_assoc, ι'_comp_hom', ι'_comp_hom'_assoc, cochainComplex_d, cochainComplex_d_assoc, instInjectiveXIntCochainComplex, instIsLECochainComplexOfNatInt, instIsStrictlyGECochainComplexOfNatInt, instIsStrictlyGECochainComplexOfNatInt_1, instQuasiIsoIntι', ι'_f_zero, ι'_f_zero_assoc
13
Total17

CategoryTheory.InjectiveResolution

Definitions

NameCategoryTheorems
cochainComplex 📖CompOp
27 mathmath: Hom.hom'_f, extEquivCohomologyClass_symm_neg, extEquivCohomologyClass_symm_add, ι'_f_zero, instIsLECochainComplexOfNatInt, extEquivCohomologyClass_symm_sub, extEquivCohomologyClass_sub, extEquivCohomologyClass_neg, extEquivCohomologyClass_symm_zero, ι'_f_zero_assoc, Hom.ι'_comp_hom'_assoc, extEquivCohomologyClass_add, Hom.hom'_f_assoc, extMk_hom, cochainComplex_d_assoc, extEquivCohomologyClass_zero, instIsKInjectiveCochainComplex, instQuasiIsoIntι', instIsStrictlyGECochainComplexOfNatInt_1, instIsStrictlyGECochainComplexOfNatInt, extEquivCohomologyClass_extMk, extEquivCohomologyClass_symm_mk_hom, Hom.ι'_comp_hom', extAddEquivCohomologyClass_symm_apply, instInjectiveXIntCochainComplex, extAddEquivCohomologyClass_apply, cochainComplex_d
cochainComplexXIso 📖CompOp
8 mathmath: Hom.hom'_f, ι'_f_zero, ι'_f_zero_assoc, Hom.hom'_f_assoc, extMk_hom, cochainComplex_d_assoc, extEquivCohomologyClass_extMk, cochainComplex_d
ι' 📖CompOp
7 mathmath: ι'_f_zero, ι'_f_zero_assoc, Hom.ι'_comp_hom'_assoc, extMk_hom, instQuasiIsoIntι', extEquivCohomologyClass_symm_mk_hom, Hom.ι'_comp_hom'

Theorems

NameKindAssumesProvesValidatesDepends On
cochainComplex_d 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
cocomplex
CategoryTheory.Iso.hom
cochainComplexXIso
CategoryTheory.Iso.inv
HomologicalComplex.extend_d_eq
AddRightCancelSemigroup.toIsRightCancelAdd
cochainComplex_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
HomologicalComplex.d
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
cocomplex
CategoryTheory.Iso.hom
cochainComplexXIso
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cochainComplex_d
instInjectiveXIntCochainComplex 📖mathematicalCategoryTheory.Injective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Injective.of_iso
injective
CategoryTheory.Limits.IsZero.injective
CochainComplex.isZero_of_isStrictlyGE
instIsStrictlyGECochainComplexOfNatInt_1
instIsLECochainComplexOfNatInt 📖mathematicalCochainComplex.IsLE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
cochainComplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.isSupported_iff_of_quasiIso
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
instQuasiIsoIntι'
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CochainComplex.instIsStrictlyLEObjIntSingleFunctor
instIsStrictlyGECochainComplexOfNatInt 📖mathematicalCochainComplex.IsStrictlyGE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
cochainComplex
CochainComplex.instIsStrictlyGEExtendNatIntEmbeddingUpNatOfNat
instIsStrictlyGECochainComplexOfNatInt_1 📖mathematicalCochainComplex.IsStrictlyGE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
cochainComplex
CochainComplex.instIsStrictlyGEExtendNatIntEmbeddingUpNatOfNat
instQuasiIsoIntι' 📖mathematicalQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
cochainComplex
ι'
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
quasiIso_comp
HomologicalComplex.extend.instHasHomology
HomologicalComplex.instHasHomologyObjSingle
quasiIso_of_isIso
CategoryTheory.Iso.isIso_inv
HomologicalComplex.instQuasiIsoExtendMap
hasHomology
quasiIso
ι'_f_zero 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.singleFunctor
cochainComplex
ι'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.single
CategoryTheory.Iso.hom
HomologicalComplex.singleObjXSelf
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
cocomplex
CochainComplex.single₀
ι
CategoryTheory.Iso.inv
cochainComplexXIso
AddRightCancelSemigroup.toIsRightCancelAdd
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
HomologicalComplex.extendMap_f
HomologicalComplex.extendSingleIso_inv_f
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
ι'_f_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.singleFunctor
cochainComplex
HomologicalComplex.Hom.f
ι'
CategoryTheory.Iso.hom
HomologicalComplex
HomologicalComplex.single
HomologicalComplex.singleObjXSelf
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
cocomplex
CochainComplex.single₀
ι
CategoryTheory.Iso.inv
cochainComplexXIso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι'_f_zero

CategoryTheory.InjectiveResolution.Hom

Definitions

NameCategoryTheorems
hom' 📖CompOp
4 mathmath: hom'_f, ι'_comp_hom'_assoc, hom'_f_assoc, ι'_comp_hom'

Theorems

NameKindAssumesProvesValidatesDepends On
hom'_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.InjectiveResolution.cochainComplex
CategoryTheory.Abelian.hasZeroObject
hom'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.InjectiveResolution.cocomplex
CategoryTheory.Iso.hom
CategoryTheory.InjectiveResolution.cochainComplexXIso
hom
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.extendMap_f
hom'_f_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.InjectiveResolution.cochainComplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.Hom.f
hom'
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.InjectiveResolution.cocomplex
CategoryTheory.Iso.hom
CategoryTheory.InjectiveResolution.cochainComplexXIso
hom
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom'_f
ι'_comp_hom' 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.InjectiveResolution.cochainComplex
CategoryTheory.InjectiveResolution.ι'
hom'
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.from_single_hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.InjectiveResolution.ι'_f_zero
CategoryTheory.Category.id_comp
hom'_f
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
ι_f_zero_comp_hom_f_zero_assoc
CategoryTheory.Category.comp_id
ι'_comp_hom'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.singleFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.InjectiveResolution.cochainComplex
CategoryTheory.InjectiveResolution.ι'
hom'
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι'_comp_hom'

---

← Back to Index