Documentation Verification Report

Resolution

📁 Source: Mathlib/CategoryTheory/Abelian/Injective/Resolution.lean

Statistics

MetricCount
DefinitionsshortComplex, desc, descCompHomotopy, descFOne, descFSucc, descFZero, descHomotopy, descHomotopyZero, descHomotopyZeroOne, descHomotopyZeroSucc, descHomotopyZeroZero, descIdHomotopy, homotopyEquiv, iso, of, ofCocomplex, injectiveResolution, injectiveResolutions
18
TheoremsshortExact_shortComplex, comp_descHomotopyZeroOne, comp_descHomotopyZeroOne_assoc, comp_descHomotopyZeroSucc, comp_descHomotopyZeroSucc_assoc, comp_descHomotopyZeroZero, comp_descHomotopyZeroZero_assoc, descFOne_zero_comm, desc_commutes, desc_commutes_assoc, desc_commutes_zero, desc_commutes_zero_assoc, exact₀, homotopyEquiv_hom_ι, homotopyEquiv_hom_ι_assoc, homotopyEquiv_inv_ι, homotopyEquiv_inv_ι_assoc, instHasInjectiveResolution, instHasInjectiveResolutions, instInjectiveXNatOfCocomplex, iso_hom_naturality, iso_hom_naturality_assoc, iso_inv_naturality, iso_inv_naturality_assoc, ofCocomplex_d_0_1, ofCocomplex_exactAt_succ, of_def, exact_f_d
28
Total46

CategoryTheory

Definitions

NameCategoryTheorems
injectiveResolution 📖CompOp
injectiveResolutions 📖CompOp
4 mathmath: InjectiveResolution.iso_hom_naturality, InjectiveResolution.iso_hom_naturality_assoc, InjectiveResolution.iso_inv_naturality_assoc, InjectiveResolution.iso_inv_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
exact_f_d 📖mathematicalShortComplex.Exact
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
Injective.syzygies
Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Injective.d
Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Limits.cokernel.condition
Limits.cokernel.condition_assoc
Limits.zero_comp
Category.id_comp
Category.comp_id
ShortComplex.exact_iff_of_epi_of_isIso_of_mono
instEpiId
IsIso.id
Injective.ι_mono
ShortComplex.exact_of_g_is_cokernel
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian

CategoryTheory.InjectivePresentation

Definitions

NameCategoryTheorems
shortComplex 📖CompOp
1 mathmath: shortExact_shortComplex

Theorems

NameKindAssumesProvesValidatesDepends On
shortExact_shortComplex 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
shortComplex
CategoryTheory.ShortComplex.exact_cokernel
mono
CategoryTheory.Limits.coequalizer.π_epi

CategoryTheory.InjectiveResolution

Definitions

NameCategoryTheorems
desc 📖CompOp
4 mathmath: desc_commutes_zero_assoc, desc_commutes, desc_commutes_assoc, desc_commutes_zero
descCompHomotopy 📖CompOp
descFOne 📖CompOp
1 mathmath: descFOne_zero_comm
descFSucc 📖CompOp
descFZero 📖CompOp
1 mathmath: descFOne_zero_comm
descHomotopy 📖CompOp
descHomotopyZero 📖CompOp
descHomotopyZeroOne 📖CompOp
2 mathmath: comp_descHomotopyZeroOne_assoc, comp_descHomotopyZeroOne
descHomotopyZeroSucc 📖CompOp
2 mathmath: comp_descHomotopyZeroSucc_assoc, comp_descHomotopyZeroSucc
descHomotopyZeroZero 📖CompOp
4 mathmath: comp_descHomotopyZeroZero_assoc, comp_descHomotopyZeroOne_assoc, comp_descHomotopyZeroOne, comp_descHomotopyZeroZero
descIdHomotopy 📖CompOp
homotopyEquiv 📖CompOp
4 mathmath: homotopyEquiv_inv_ι, homotopyEquiv_hom_ι_assoc, homotopyEquiv_hom_ι, homotopyEquiv_inv_ι_assoc
iso 📖CompOp
4 mathmath: iso_hom_naturality, iso_hom_naturality_assoc, iso_inv_naturality_assoc, iso_inv_naturality
of 📖CompOp
1 mathmath: of_def
ofCocomplex 📖CompOp
4 mathmath: of_def, ofCocomplex_d_0_1, ofCocomplex_exactAt_succ, instInjectiveXNatOfCocomplex

Theorems

NameKindAssumesProvesValidatesDepends On
comp_descHomotopyZeroOne 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
HomologicalComplex.d
descHomotopyZeroOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
HomologicalComplex.Hom.f
descHomotopyZeroZero
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.Exact.comp_descToInjective
HomologicalComplex.d_comp_d
exact_succ
comp_descHomotopyZeroOne_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
HomologicalComplex.d
descHomotopyZeroOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
HomologicalComplex.Hom.f
descHomotopyZeroZero
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_descHomotopyZeroOne
comp_descHomotopyZeroSucc 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
descHomotopyZeroSucc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.Exact.comp_descToInjective
HomologicalComplex.d_comp_d
exact_succ
comp_descHomotopyZeroSucc_assoc 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
descHomotopyZeroSucc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_descHomotopyZeroSucc
comp_descHomotopyZeroZero 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
HomologicalComplex.d
descHomotopyZeroZero
HomologicalComplex.Hom.f
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.Exact.comp_descToInjective
ι_f_zero_comp_complex_d
exact₀
comp_descHomotopyZeroZero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
HomologicalComplex.d
descHomotopyZeroZero
HomologicalComplex.Hom.f
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_descHomotopyZeroZero
descFOne_zero_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
cocomplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.d
descFOne
descFZero
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.ShortComplex.Exact.comp_descToInjective
AddRightCancelSemigroup.toIsRightCancelAdd
ι_f_zero_comp_complex_d
exact₀
desc_commutes 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
desc
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.from_single_hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Injective.comp_factorThru
CochainComplex.single₀_map_f_zero
desc_commutes_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
desc
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
desc_commutes
desc_commutes_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
desc
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.congr_hom
desc_commutes
CochainComplex.single₀_map_f_zero
desc_commutes_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
desc
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
desc_commutes_zero
exact₀ 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomologicalComplex.d
ι_f_zero_comp_complex_d
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.ShortComplex.exact_of_f_is_kernel
AddRightCancelSemigroup.toIsRightCancelAdd
ι_f_zero_comp_complex_d
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
homotopyEquiv_hom_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
HomotopyEquiv.hom
homotopyEquiv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
desc_commutes
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homotopyEquiv_hom_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
HomotopyEquiv.hom
homotopyEquiv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homotopyEquiv_hom_ι
homotopyEquiv_inv_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
HomotopyEquiv.inv
homotopyEquiv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
desc_commutes
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homotopyEquiv_inv_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
ι
HomotopyEquiv.inv
homotopyEquiv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homotopyEquiv_inv_ι
instHasInjectiveResolution 📖mathematicalCategoryTheory.HasInjectiveResolution
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.hasZeroObject
instHasInjectiveResolutions 📖mathematicalCategoryTheory.HasInjectiveResolutions
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.hasZeroObject
instHasInjectiveResolution
instInjectiveXNatOfCocomplex 📖mathematicalCategoryTheory.Injective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ofCocomplex
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Injective.injective_under
iso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.injectiveResolutions
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.eq_of_homotopy
desc_commutes_assoc
homotopyEquiv_hom_ι
homotopyEquiv_hom_ι_assoc
HomologicalComplex.from_single_hom_ext
CochainComplex.single₀_map_f_zero
iso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.injectiveResolutions
CategoryTheory.Functor.map
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_naturality
iso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.injectiveResolutions
CategoryTheory.Iso.inv
iso
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
iso_hom_naturality
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
iso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.injectiveResolutions
CategoryTheory.Iso.inv
iso
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_naturality
ofCocomplex_d_0_1 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ofCocomplex
CategoryTheory.Injective.d
CategoryTheory.Injective.under
CategoryTheory.Injective.ι
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CochainComplex.mk'_d_1_0
ofCocomplex_exactAt_succ 📖mathematicalHomologicalComplex.ExactAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ofCocomplex
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.exactAt_iff'
CochainComplex.prev_nat_succ
CochainComplex.next
HomologicalComplex.d_comp_d
CochainComplex.of_d
CategoryTheory.exact_f_d
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.hasCokernel_epi_comp
CategoryTheory.Limits.coequalizer.π_epi
of_def 📖mathematicalof
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ofCocomplex
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
CategoryTheory.Limits.HasZeroMorphisms.zero
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CochainComplex.single₀
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CochainComplex.fromSingle₀Equiv
CategoryTheory.Injective.ι
CategoryTheory.Abelian.hasZeroObject

---

← Back to Index