Documentation Verification Report

LeftDerived

๐Ÿ“ Source: Mathlib/CategoryTheory/Abelian/LeftDerived.lean

Statistics

MetricCount
DefinitionsfromLeftDerivedZero, leftDerived, leftDerivedToHomotopyCategory, leftDerivedZeroIsoSelf, leftDerived, leftDerivedToHomotopyCategory, fromLeftDerivedZero', isoLeftDerivedObj, isoLeftDerivedToHomotopyCategoryObj
9
TheoremsisZero_leftDerived_obj_projective_succ, leftDerivedZeroIsoSelf_hom, leftDerivedZeroIsoSelf_hom_inv_id, leftDerivedZeroIsoSelf_hom_inv_id_app, leftDerivedZeroIsoSelf_hom_inv_id_app_assoc, leftDerivedZeroIsoSelf_hom_inv_id_assoc, leftDerivedZeroIsoSelf_inv_hom_id, leftDerivedZeroIsoSelf_inv_hom_id_app, leftDerivedZeroIsoSelf_inv_hom_id_app_assoc, leftDerivedZeroIsoSelf_inv_hom_id_assoc, leftDerived_map_eq, leftDerivedToHomotopyCategory_comp, leftDerivedToHomotopyCategory_comp_assoc, leftDerivedToHomotopyCategory_id, leftDerived_comp, leftDerived_comp_assoc, leftDerived_id, fromLeftDerivedZero'_naturality, fromLeftDerivedZero'_naturality_assoc, fromLeftDerivedZero_eq, instIsIsoFromLeftDerivedZero'Self, isoLeftDerivedObj_hom_naturality, isoLeftDerivedObj_hom_naturality_assoc, isoLeftDerivedObj_inv_naturality, isoLeftDerivedObj_inv_naturality_assoc, isoLeftDerivedToHomotopyCategoryObj_hom_naturality, isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, isoLeftDerivedToHomotopyCategoryObj_inv_naturality, isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, leftDerivedToHomotopyCategory_app_eq, leftDerived_app_eq, pOpcycles_comp_fromLeftDerivedZero', pOpcycles_comp_fromLeftDerivedZero'_assoc, instIsIsoAppFromLeftDerivedZero, instIsIsoAppFromLeftDerivedZeroOfProjective, instIsIsoFromLeftDerivedZero', instIsIsoFunctorFromLeftDerivedZero
37
Total46

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoAppFromLeftDerivedZero ๐Ÿ“–mathematicalโ€”IsIso
Functor.obj
Functor.leftDerived
NatTrans.app
Functor.fromLeftDerivedZero
โ€”Abelian.hasZeroObject
categoryWithHomology_of_abelian
IsIso.comp_isIso
NatIso.hom_app_isIso
ChainComplex.isIso_homologyฮนโ‚€
instIsIsoFromLeftDerivedZero'
instIsIsoAppFromLeftDerivedZeroOfProjective ๐Ÿ“–mathematicalโ€”IsIso
Functor.obj
Functor.leftDerived
NatTrans.app
Functor.fromLeftDerivedZero
โ€”Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
categoryWithHomology_of_abelian
Functor.preservesZeroMorphisms_of_additive
ProjectiveResolution.fromLeftDerivedZero_eq
IsIso.comp_isIso
Iso.isIso_hom
ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self
instIsIsoFromLeftDerivedZero' ๐Ÿ“–mathematicalโ€”IsIso
HomologicalComplex.opcycles
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
Functor.mapHomologicalComplex
Functor.preservesZeroMorphisms_of_additive
ProjectiveResolution.complex
Abelian.hasZeroObject
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
HomologicalComplex.sc
ProjectiveResolution.fromLeftDerivedZero'
โ€”Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
Functor.preservesZeroMorphisms_of_additive
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
ChainComplex.isIso_descOpcycles_iff
ShortComplex.zero
ShortComplex.exact_and_epi_g_iff_g_is_cokernel
balanced_of_strongMonoCategory
strongMonoCategory_of_regularMonoCategory
regularMonoCategoryOfNormalMonoCategory
Abelian.toIsNormalMonoCategory
Limits.PreservesColimitsOfShape.preservesColimit
Limits.PreservesFiniteColimits.preservesFiniteColimits
instIsIsoFunctorFromLeftDerivedZero ๐Ÿ“–mathematicalโ€”IsIso
Functor
Functor.category
Functor.leftDerived
Functor.fromLeftDerivedZero
โ€”Abelian.hasZeroObject
NatIso.isIso_of_isIso_app
instIsIsoAppFromLeftDerivedZero

CategoryTheory.Functor

Definitions

NameCategoryTheorems
fromLeftDerivedZero ๐Ÿ“–CompOp
13 mathmath: leftDerivedZeroIsoSelf_inv_hom_id, leftDerivedZeroIsoSelf_hom_inv_id_app, CategoryTheory.instIsIsoAppFromLeftDerivedZeroOfProjective, leftDerivedZeroIsoSelf_inv_hom_id_app, leftDerivedZeroIsoSelf_inv_hom_id_assoc, leftDerivedZeroIsoSelf_inv_hom_id_app_assoc, CategoryTheory.instIsIsoAppFromLeftDerivedZero, leftDerivedZeroIsoSelf_hom_inv_id, CategoryTheory.instIsIsoFunctorFromLeftDerivedZero, leftDerivedZeroIsoSelf_hom, leftDerivedZeroIsoSelf_hom_inv_id_app_assoc, leftDerivedZeroIsoSelf_hom_inv_id_assoc, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq
leftDerived ๐Ÿ“–CompOp
28 mathmath: CategoryTheory.Tor'_obj_obj, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality_assoc, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality_assoc, leftDerivedZeroIsoSelf_inv_hom_id, leftDerivedZeroIsoSelf_hom_inv_id_app, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality, CategoryTheory.instIsIsoAppFromLeftDerivedZeroOfProjective, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CategoryTheory.Tor_obj, isZero_leftDerived_obj_projective_succ, CategoryTheory.Tor'_obj_map, leftDerivedZeroIsoSelf_inv_hom_id_app, CategoryTheory.NatTrans.leftDerived_comp_assoc, leftDerived_map_eq, leftDerivedZeroIsoSelf_inv_hom_id_assoc, leftDerivedZeroIsoSelf_inv_hom_id_app_assoc, CategoryTheory.instIsIsoAppFromLeftDerivedZero, leftDerivedZeroIsoSelf_hom_inv_id, CategoryTheory.instIsIsoFunctorFromLeftDerivedZero, leftDerivedZeroIsoSelf_hom, leftDerivedZeroIsoSelf_hom_inv_id_app_assoc, leftDerivedZeroIsoSelf_hom_inv_id_assoc, CategoryTheory.NatTrans.leftDerived_comp, CategoryTheory.NatTrans.leftDerived_id, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality, CategoryTheory.Tor'_map_app, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, Rep.Tor_obj
leftDerivedToHomotopyCategory ๐Ÿ“–CompOp
8 mathmath: CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp_assoc, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_id
leftDerivedZeroIsoSelf ๐Ÿ“–CompOp
9 mathmath: leftDerivedZeroIsoSelf_inv_hom_id, leftDerivedZeroIsoSelf_hom_inv_id_app, leftDerivedZeroIsoSelf_inv_hom_id_app, leftDerivedZeroIsoSelf_inv_hom_id_assoc, leftDerivedZeroIsoSelf_inv_hom_id_app_assoc, leftDerivedZeroIsoSelf_hom_inv_id, leftDerivedZeroIsoSelf_hom, leftDerivedZeroIsoSelf_hom_inv_id_app_assoc, leftDerivedZeroIsoSelf_hom_inv_id_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_leftDerived_obj_projective_succ ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.IsZero
obj
leftDerived
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.IsZero.of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
preservesZeroMorphisms_of_additive
HomologicalComplex.exactAt_iff_isZero_homology
CategoryTheory.ShortComplex.exact_of_isZero_Xโ‚‚
map_isZero
CategoryTheory.Limits.isZero_zero
leftDerivedZeroIsoSelf_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftDerived
leftDerivedZeroIsoSelf
fromLeftDerivedZero
โ€”CategoryTheory.Abelian.hasZeroObject
leftDerivedZeroIsoSelf_hom_inv_id ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
leftDerived
fromLeftDerivedZero
CategoryTheory.Iso.inv
leftDerivedZeroIsoSelf
CategoryTheory.CategoryStruct.id
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom_inv_id
leftDerivedZeroIsoSelf_hom_inv_id_app ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftDerived
CategoryTheory.NatTrans.app
fromLeftDerivedZero
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftDerivedZeroIsoSelf
CategoryTheory.CategoryStruct.id
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom_inv_id_app
leftDerivedZeroIsoSelf_hom_inv_id_app_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftDerived
CategoryTheory.NatTrans.app
fromLeftDerivedZero
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftDerivedZeroIsoSelf
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedZeroIsoSelf_hom_inv_id_app
leftDerivedZeroIsoSelf_hom_inv_id_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
leftDerived
fromLeftDerivedZero
CategoryTheory.Iso.inv
leftDerivedZeroIsoSelf
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedZeroIsoSelf_hom_inv_id
leftDerivedZeroIsoSelf_inv_hom_id ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
leftDerived
CategoryTheory.Iso.inv
leftDerivedZeroIsoSelf
fromLeftDerivedZero
CategoryTheory.CategoryStruct.id
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.inv_hom_id
leftDerivedZeroIsoSelf_inv_hom_id_app ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftDerived
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftDerivedZeroIsoSelf
fromLeftDerivedZero
CategoryTheory.CategoryStruct.id
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.inv_hom_id_app
leftDerivedZeroIsoSelf_inv_hom_id_app_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftDerived
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftDerivedZeroIsoSelf
fromLeftDerivedZero
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedZeroIsoSelf_inv_hom_id_app
leftDerivedZeroIsoSelf_inv_hom_id_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
leftDerived
CategoryTheory.Iso.inv
leftDerivedZeroIsoSelf
fromLeftDerivedZero
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedZeroIsoSelf_inv_hom_id
leftDerived_map_eq ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ProjectiveResolution.complex
CategoryTheory.Abelian.hasZeroObject
obj
ChainComplex.singleโ‚€
CategoryTheory.ProjectiveResolution.ฯ€
map
leftDerived
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
CategoryTheory.ProjectiveResolution.isoLeftDerivedObj
comp
CategoryTheory.Iso.inv
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
preservesZeroMorphisms_of_additive
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality
HomologicalComplex.comp_f
ChainComplex.singleโ‚€_map_f_zero
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
leftDerived ๐Ÿ“–CompOp
8 mathmath: Rep.Tor_map, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CategoryTheory.Tor'_obj_map, leftDerived_comp_assoc, leftDerived_comp, leftDerived_id, CategoryTheory.Tor_map, CategoryTheory.Tor'_map_app
leftDerivedToHomotopyCategory ๐Ÿ“–CompOp
4 mathmath: leftDerivedToHomotopyCategory_comp_assoc, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, leftDerivedToHomotopyCategory_comp, leftDerivedToHomotopyCategory_id

Theorems

NameKindAssumesProvesValidatesDepends On
leftDerivedToHomotopyCategory_comp ๐Ÿ“–mathematicalโ€”leftDerivedToHomotopyCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Functor.leftDerivedToHomotopyCategory
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
leftDerivedToHomotopyCategory_comp_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftDerivedToHomotopyCategory
leftDerivedToHomotopyCategory
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedToHomotopyCategory_comp
leftDerivedToHomotopyCategory_id ๐Ÿ“–mathematicalโ€”leftDerivedToHomotopyCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Functor.leftDerivedToHomotopyCategory
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
leftDerived_comp ๐Ÿ“–mathematicalโ€”leftDerived
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftDerived
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.whiskerRight_comp
leftDerived_comp_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftDerived
leftDerived
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerived_comp
leftDerived_id ๐Ÿ“–mathematicalโ€”leftDerived
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.leftDerived
โ€”CategoryTheory.Abelian.hasZeroObject
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.whiskerRight_id'

CategoryTheory.ProjectiveResolution

Definitions

NameCategoryTheorems
fromLeftDerivedZero' ๐Ÿ“–CompOp
7 mathmath: pOpcycles_comp_fromLeftDerivedZero'_assoc, instIsIsoFromLeftDerivedZero'Self, pOpcycles_comp_fromLeftDerivedZero', fromLeftDerivedZero'_naturality, fromLeftDerivedZero'_naturality_assoc, fromLeftDerivedZero_eq, CategoryTheory.instIsIsoFromLeftDerivedZero'
isoLeftDerivedObj ๐Ÿ“–CompOp
7 mathmath: isoLeftDerivedObj_hom_naturality_assoc, isoLeftDerivedObj_inv_naturality_assoc, isoLeftDerivedObj_hom_naturality, leftDerived_app_eq, CategoryTheory.Functor.leftDerived_map_eq, isoLeftDerivedObj_inv_naturality, fromLeftDerivedZero_eq
isoLeftDerivedToHomotopyCategoryObj ๐Ÿ“–CompOp
5 mathmath: isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, leftDerivedToHomotopyCategory_app_eq, isoLeftDerivedToHomotopyCategoryObj_inv_naturality, isoLeftDerivedToHomotopyCategoryObj_hom_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
fromLeftDerivedZero'_naturality ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomologicalComplex.opcycles
HomologicalComplex
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.opcyclesMap
CategoryTheory.Functor.map
fromLeftDerivedZero'
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.cancel_epi
HomologicalComplex.instEpiPOpcycles
HomologicalComplex.p_opcyclesMap_assoc
pOpcycles_comp_fromLeftDerivedZero'
CategoryTheory.Functor.map_comp
pOpcycles_comp_fromLeftDerivedZero'_assoc
fromLeftDerivedZero'_naturality_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomologicalComplex.opcycles
HomologicalComplex
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.opcyclesMap
CategoryTheory.Functor.map
fromLeftDerivedZero'
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromLeftDerivedZero'_naturality
fromLeftDerivedZero_eq ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.leftDerived
CategoryTheory.Functor.fromLeftDerivedZero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.instCategory
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom
isoLeftDerivedObj
HomologicalComplex.opcycles
HomologicalComplex.homology
ChainComplex.isoHomologyฮนโ‚€
fromLeftDerivedZero'
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.HasProjectiveResolutions.out
fromLeftDerivedZero'_naturality
lift_commutes_zero
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
HomologicalComplex.homologyฮน_naturality_assoc
CategoryTheory.NatTrans.naturality_assoc
instIsIsoFromLeftDerivedZero'Self ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIso
HomologicalComplex.opcycles
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
complex
CategoryTheory.Abelian.hasZeroObject
self
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
fromLeftDerivedZero'
โ€”AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
ChainComplex.isIso_descOpcycles_iff
CategoryTheory.ShortComplex.Splitting.exact
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Functor.map_isZero
CategoryTheory.Limits.isZero_zero
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.comp_zero
zero_add
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Functor.map_isIso
CategoryTheory.IsIso.id
isoLeftDerivedObj_hom_naturality ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
CategoryTheory.Functor.leftDerived
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
isoLeftDerivedObj
CategoryTheory.Functor.comp
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
isoLeftDerivedToHomotopyCategoryObj_hom_naturality
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality
isoLeftDerivedObj_hom_naturality_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
CategoryTheory.Functor.leftDerived
CategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
isoLeftDerivedObj
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLeftDerivedObj_hom_naturality
isoLeftDerivedObj_inv_naturality ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.leftDerived
CategoryTheory.Iso.inv
isoLeftDerivedObj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
isoLeftDerivedObj_hom_naturality
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
isoLeftDerivedObj_inv_naturality_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.leftDerived
CategoryTheory.Iso.inv
isoLeftDerivedObj
CategoryTheory.Functor.map
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLeftDerivedObj_inv_naturality
isoLeftDerivedToHomotopyCategoryObj_hom_naturality ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.leftDerivedToHomotopyCategory
HomologicalComplex
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.quotient
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
isoLeftDerivedToHomotopyCategoryObj
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.leftDerivedToHomotopyCategory
CategoryTheory.Functor.map
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
isoLeftDerivedToHomotopyCategoryObj
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLeftDerivedToHomotopyCategoryObj_hom_naturality
isoLeftDerivedToHomotopyCategoryObj_inv_naturality ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.quotient
CategoryTheory.Functor.leftDerivedToHomotopyCategory
CategoryTheory.Iso.inv
isoLeftDerivedToHomotopyCategoryObj
CategoryTheory.Functor.map
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
iso_inv_naturality
CategoryTheory.NatTrans.naturality_assoc
isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.leftDerivedToHomotopyCategory
CategoryTheory.Iso.inv
isoLeftDerivedToHomotopyCategoryObj
CategoryTheory.Functor.map
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLeftDerivedToHomotopyCategoryObj_inv_naturality
leftDerivedToHomotopyCategory_app_eq ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Functor.leftDerivedToHomotopyCategory
CategoryTheory.NatTrans.leftDerivedToHomotopyCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.quotient
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom
isoLeftDerivedToHomotopyCategoryObj
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.map
CategoryTheory.NatTrans.mapHomologicalComplex
CategoryTheory.Iso.inv
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
CategoryTheory.NatTrans.mapHomologicalComplex_naturality
leftDerived_app_eq ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.leftDerived
CategoryTheory.NatTrans.leftDerived
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.instCategory
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom
isoLeftDerivedObj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.mapHomologicalComplex
CategoryTheory.Iso.inv
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
leftDerivedToHomotopyCategory_app_eq
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
pOpcycles_comp_fromLeftDerivedZero' ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
complex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.opcycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.pOpcycles
fromLeftDerivedZero'
CategoryTheory.Functor.map
ChainComplex
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.p_descOpcycles
pOpcycles_comp_fromLeftDerivedZero'_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
complex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.opcycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.pOpcycles
fromLeftDerivedZero'
CategoryTheory.Functor.map
ChainComplex
ChainComplex.singleโ‚€
HomologicalComplex.Hom.f
ฯ€
โ€”CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_comp_fromLeftDerivedZero'

---

โ† Back to Index