Documentation Verification Report

NonPreadditive

πŸ“ Source: Mathlib/CategoryTheory/Abelian/NonPreadditive.lean

Statistics

MetricCount
DefinitionsNonPreadditiveAbelian, epiIsCokernelOfKernel, hasAdd, hasNeg, hasSub, isColimitσ, monoIsKernelOfCokernel, preadditive, r, toHasZeroMorphisms, σ
11
Theoremsadd_assoc, add_comm, add_comp, add_def, add_neg, add_neg_cancel, add_zero, comp_add, comp_sub, diag_Οƒ, diag_Οƒ_assoc, epi_r, has_cokernels, has_finite_coproducts, has_finite_products, has_kernels, has_zero_object, instEpiFactorThruImage, instMonoFactorThruCoimage, isIso_factorThruCoimage, isIso_factorThruImage, isIso_r, lift_map, lift_map_assoc, lift_sub_lift, lift_Οƒ, lift_Οƒ_assoc, mono_r, mono_Ξ”, neg_add, neg_add_cancel, neg_def, neg_neg, neg_sub, neg_sub', sub_add, sub_comp, sub_def, sub_self, sub_sub_sub, sub_zero, toIsNormalEpiCategory, toIsNormalMonoCategory, Οƒ_comp
44
Total55

CategoryTheory

Definitions

NameCategoryTheorems
NonPreadditiveAbelian πŸ“–CompDataβ€”

CategoryTheory.NonPreadditiveAbelian

Definitions

NameCategoryTheorems
epiIsCokernelOfKernel πŸ“–CompOpβ€”
hasAdd πŸ“–CompOp
12 mathmath: neg_sub', add_assoc, add_def, sub_add, add_zero, neg_add_cancel, neg_add, add_neg, add_comp, add_comm, comp_add, add_neg_cancel
hasNeg πŸ“–CompOp
9 mathmath: neg_sub', add_def, neg_add_cancel, neg_add, add_neg, neg_sub, add_neg_cancel, neg_def, neg_neg
hasSub πŸ“–CompOp
14 mathmath: neg_sub', add_def, sub_sub_sub, sub_add, sub_zero, sub_comp, lift_sub_lift, neg_add, add_neg, neg_sub, sub_def, comp_sub, neg_def, sub_self
isColimitΟƒ πŸ“–CompOpβ€”
monoIsKernelOfCokernel πŸ“–CompOpβ€”
preadditive πŸ“–CompOpβ€”
r πŸ“–CompOp
5 mathmath: epi_r, isIso_r, mono_r, diag_Οƒ_assoc, lift_Οƒ_assoc
toHasZeroMorphisms πŸ“–CompOp
33 mathmath: CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_e, diag_Οƒ, isIso_factorThruCoimage, CategoryTheory.Abelian.instEpiFactorThruImage, has_cokernels, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_e, has_kernels, sub_zero, CategoryTheory.Abelian.instMonoFactorThruCoimage, instEpiFactorThruImage, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_I, epi_r, toIsNormalMonoCategory, isIso_r, add_zero, toIsNormalEpiCategory, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_m, neg_add_cancel, lift_map_assoc, mono_r, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_I, instMonoFactorThruCoimage, diag_Οƒ_assoc, lift_map, CategoryTheory.Abelian.isIso_factorThruImage, isIso_factorThruImage, add_neg_cancel, lift_Οƒ, lift_Οƒ_assoc, neg_def, CategoryTheory.Abelian.isIso_factorThruCoimage, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_m, sub_self
Οƒ πŸ“–CompOp
4 mathmath: diag_Οƒ, Οƒ_comp, sub_def, lift_Οƒ

Theorems

NameKindAssumesProvesValidatesDepends On
add_assoc πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
β€”add_def
sub_add
add_neg
neg_sub'
neg_neg
add_comm πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
β€”add_def
neg_neg
neg_def
sub_sub_sub
neg_sub
add_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
hasAdd
β€”add_def
sub_comp
neg_def
CategoryTheory.Limits.zero_comp
add_def πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
hasSub
hasNeg
β€”β€”
add_neg πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
hasNeg
hasSub
β€”add_def
neg_neg
add_neg_cancel πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
hasNeg
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”add_neg
sub_self
add_zero πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”add_def
neg_def
sub_self
sub_zero
comp_add πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
hasAdd
β€”add_def
comp_sub
neg_def
CategoryTheory.Limits.comp_zero
comp_sub πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
hasSub
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
sub_def
CategoryTheory.Category.assoc
CategoryTheory.Limits.prod.comp_lift
diag_Οƒ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
Οƒ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
isIso_r
CategoryTheory.Limits.cokernel.condition_assoc
CategoryTheory.Limits.zero_comp
diag_Οƒ_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
CategoryTheory.Limits.cokernel
toHasZeroMorphisms
CategoryTheory.Limits.cokernel.Ο€
CategoryTheory.inv
r
isIso_r
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
isIso_r
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
diag_Οƒ
epi_r πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Limits.cokernel
toHasZeroMorphisms
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
r
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.prod.lift_snd
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.limit.lift_Ο€
CategoryTheory.Limits.KernelFork.condition
CategoryTheory.cancel_mono
CategoryTheory.mono_of_mono_fac
CategoryTheory.instMonoId
CategoryTheory.Limits.prod.lift_fst
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.instIsRegularEpiOfIsSplitEpi
CategoryTheory.Limits.isSplitEpi_prod_snd
CategoryTheory.NormalMonoCategory.epi_of_zero_cancel
has_kernels
toIsNormalMonoCategory
has_zero_object
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.CokernelCofork.Ο€_ofΟ€
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.zero_comp
CategoryTheory.cancel_epi
CategoryTheory.Limits.coequalizer.Ο€_epi
has_cokernels πŸ“–mathematicalβ€”CategoryTheory.Limits.HasCokernels
toHasZeroMorphisms
β€”β€”
has_finite_coproducts πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteCoproductsβ€”β€”
has_finite_products πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteProductsβ€”β€”
has_kernels πŸ“–mathematicalβ€”CategoryTheory.Limits.HasKernels
toHasZeroMorphisms
β€”β€”
has_zero_object πŸ“–mathematicalβ€”CategoryTheory.Limits.HasZeroObjectβ€”β€”
instEpiFactorThruImage πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Abelian.image
toHasZeroMorphisms
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.Ο€
CategoryTheory.Abelian.factorThruImage
β€”CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.NormalMonoCategory.epi_of_zero_cancel
has_finite_products
toIsNormalMonoCategory
has_zero_object
CategoryTheory.mono_comp
CategoryTheory.Limits.equalizer.ΞΉ_mono
CategoryTheory.Abelian.image.fac
CategoryTheory.Category.assoc
CategoryTheory.NormalMono.w
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.zero_comp
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_of_epi_comp
CategoryTheory.epi_of_epi_fac
CategoryTheory.instEpiId
CategoryTheory.cancel_mono
instMonoFactorThruCoimage πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Abelian.coimage
toHasZeroMorphisms
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ΞΉ
CategoryTheory.Abelian.factorThruCoimage
β€”CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.NormalEpiCategory.mono_of_cancel_zero
has_finite_coproducts
toIsNormalEpiCategory
has_zero_object
CategoryTheory.epi_comp
CategoryTheory.Limits.coequalizer.Ο€_epi
CategoryTheory.Abelian.coimage.fac
CategoryTheory.Category.assoc
CategoryTheory.NormalEpi.w
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.comp_zero
CategoryTheory.Category.comp_id
CategoryTheory.Limits.zero_of_comp_mono
CategoryTheory.mono_of_mono_fac
CategoryTheory.instMonoId
CategoryTheory.cancel_epi
isIso_factorThruCoimage πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Abelian.coimage
toHasZeroMorphisms
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernel.ΞΉ
CategoryTheory.Abelian.factorThruCoimage
β€”CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
instMonoFactorThruCoimage
CategoryTheory.Abelian.epi_factorThruCoimage
isIso_factorThruImage πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Abelian.image
toHasZeroMorphisms
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.cokernel.Ο€
CategoryTheory.Abelian.factorThruImage
β€”CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Abelian.mono_factorThruImage
instEpiFactorThruImage
isIso_r πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Limits.cokernel
toHasZeroMorphisms
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
r
β€”CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
mono_r
epi_r
lift_map πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.prod.lift
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
CategoryTheory.Limits.prod.map
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.prod.lift_map
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
lift_map_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.prod.lift
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
CategoryTheory.Limits.prod.map
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_map
lift_sub_lift πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
hasSub
CategoryTheory.Limits.prod.lift
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Category.assoc
Οƒ_comp
CategoryTheory.Limits.prod.lift_map_assoc
CategoryTheory.Limits.prod.lift_fst
CategoryTheory.Limits.prod.lift_snd
lift_Οƒ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.prod.lift
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
Οƒ
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
isIso_r
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
lift_Οƒ_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.prod.lift
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.diag
CategoryTheory.Limits.cokernel.Ο€
CategoryTheory.inv
r
isIso_r
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
isIso_r
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
lift_Οƒ
mono_r πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Limits.cokernel
toHasZeroMorphisms
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
r
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
CategoryTheory.Limits.cokernel.condition
mono_Ξ”
CategoryTheory.NormalEpiCategory.mono_of_cancel_zero
has_finite_coproducts
toIsNormalEpiCategory
has_zero_object
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Limits.prod.lift_snd
CategoryTheory.Limits.KernelFork.ΞΉ_ofΞΉ
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
CategoryTheory.cancel_mono
CategoryTheory.mono_of_mono_fac
CategoryTheory.instMonoId
CategoryTheory.Limits.prod.lift_fst
CategoryTheory.Limits.zero_comp
mono_Ξ” πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.diag
β€”CategoryTheory.mono_of_mono_fac
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.instMonoId
CategoryTheory.Limits.prod.lift_fst
neg_add πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasNeg
hasAdd
hasSub
β€”add_def
neg_sub'
add_neg
neg_add_cancel πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
hasNeg
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”add_comm
add_neg_cancel
neg_def πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasNeg
hasSub
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”β€”
neg_neg πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasNeg
β€”neg_def
sub_self
sub_sub_sub
sub_zero
neg_sub πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasSub
hasNeg
β€”neg_def
sub_zero
sub_sub_sub
neg_sub' πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasNeg
hasSub
hasAdd
β€”neg_def
sub_self
sub_sub_sub
add_def
sub_add πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasAdd
hasSub
β€”add_def
neg_def
sub_sub_sub
sub_zero
sub_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
hasSub
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
sub_def
CategoryTheory.Category.assoc
Οƒ_comp
CategoryTheory.Limits.prod.lift_map
sub_def πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasSub
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.prod.lift
Οƒ
β€”β€”
sub_self πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasSub
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
sub_def
CategoryTheory.Category.comp_id
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Category.assoc
diag_Οƒ
CategoryTheory.Limits.comp_zero
sub_sub_sub πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasSub
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
sub_def
lift_sub_lift
CategoryTheory.Category.assoc
Οƒ_comp
CategoryTheory.Limits.prod.lift_map_assoc
sub_zero πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hasSub
CategoryTheory.Limits.HasZeroMorphisms.zero
toHasZeroMorphisms
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
sub_def
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Category.assoc
lift_Οƒ
toIsNormalEpiCategory πŸ“–mathematicalβ€”CategoryTheory.IsNormalEpiCategory
toHasZeroMorphisms
β€”β€”
toIsNormalMonoCategory πŸ“–mathematicalβ€”CategoryTheory.IsNormalMonoCategory
toHasZeroMorphisms
β€”β€”
Οƒ_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Οƒ
CategoryTheory.Limits.prod.map
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
has_finite_products
Finite.of_fintype
diag_Οƒ
CategoryTheory.Limits.prod.diag_map_assoc
CategoryTheory.Limits.comp_zero
lift_Οƒ
CategoryTheory.Category.comp_id
lift_map_assoc
CategoryTheory.Limits.CokernelCofork.Ο€_ofΟ€
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.Cofork.Ο€_ofΟ€

---

← Back to Index