| Name | Category | Theorems |
epiIsCokernelOfKernel π | CompOp | β |
hasAdd π | CompOp | 12 mathmath: neg_sub', add_assoc, add_def, sub_add, add_zero, neg_add_cancel, neg_add, add_neg, add_comp, add_comm, comp_add, add_neg_cancel
|
hasNeg π | CompOp | 9 mathmath: neg_sub', add_def, neg_add_cancel, neg_add, add_neg, neg_sub, add_neg_cancel, neg_def, neg_neg
|
hasSub π | CompOp | 14 mathmath: neg_sub', add_def, sub_sub_sub, sub_add, sub_zero, sub_comp, lift_sub_lift, neg_add, add_neg, neg_sub, sub_def, comp_sub, neg_def, sub_self
|
isColimitΟ π | CompOp | β |
monoIsKernelOfCokernel π | CompOp | β |
preadditive π | CompOp | β |
r π | CompOp | 5 mathmath: epi_r, isIso_r, mono_r, diag_Ο_assoc, lift_Ο_assoc
|
toHasZeroMorphisms π | CompOp | 33 mathmath: CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_e, diag_Ο, isIso_factorThruCoimage, CategoryTheory.Abelian.instEpiFactorThruImage, has_cokernels, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_e, has_kernels, sub_zero, CategoryTheory.Abelian.instMonoFactorThruCoimage, instEpiFactorThruImage, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_I, epi_r, toIsNormalMonoCategory, isIso_r, add_zero, toIsNormalEpiCategory, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_m, neg_add_cancel, lift_map_assoc, mono_r, CategoryTheory.Abelian.imageStrongEpiMonoFactorisation_I, instMonoFactorThruCoimage, diag_Ο_assoc, lift_map, CategoryTheory.Abelian.isIso_factorThruImage, isIso_factorThruImage, add_neg_cancel, lift_Ο, lift_Ο_assoc, neg_def, CategoryTheory.Abelian.isIso_factorThruCoimage, CategoryTheory.Abelian.coimageStrongEpiMonoFactorisation_m, sub_self
|
Ο π | CompOp | 4 mathmath: diag_Ο, Ο_comp, sub_def, lift_Ο
|