| Name | Category | Theorems |
cokernelOpOp 📖 | CompOp | 2 mathmath: cokernelOpOp_hom, cokernelOpOp_inv
|
cokernelOpUnop 📖 | CompOp | 3 mathmath: cokernel.π_op, cokernelOpUnop_inv, cokernelOpUnop_hom
|
cokernelUnopOp 📖 | CompOp | 3 mathmath: cokernelUnopOp_hom, cokernel.π_unop, cokernelUnopOp_inv
|
cokernelUnopUnop 📖 | CompOp | 2 mathmath: cokernelUnopUnop_inv, cokernelUnopUnop_hom
|
imageOpOp 📖 | CompOp | 1 mathmath: imageToKernel_op
|
imageOpUnop 📖 | CompOp | — |
imageUnopOp 📖 | CompOp | 4 mathmath: image_ι_op_comp_imageUnopOp_hom, factorThruImage_comp_imageUnopOp_inv, imageUnopOp_hom_comp_image_ι, imageUnopOp_inv_comp_op_factorThruImage
|
imageUnopUnop 📖 | CompOp | 1 mathmath: imageToKernel_unop
|
instAbelianOpposite 📖 | CompOp | 34 mathmath: kernelUnopOp_inv, ShortComplex.SnakeInput.op_δ, imageToKernel_unop, cokernelUnopUnop_inv, kernelOpUnop_hom, ShortComplex.SnakeInput.op_L₂, ShortComplex.SnakeInput.op_v₁₂, imageToKernel_op, cokernelOpOp_hom, image_ι_op_comp_imageUnopOp_hom, kernelUnopUnop_inv, kernelOpUnop_inv, cokernelUnopOp_hom, cokernel.π_unop, factorThruImage_comp_imageUnopOp_inv, ShortComplex.SnakeInput.op_L₀, kernelUnopOp_hom, cokernel.π_op, cokernelOpUnop_inv, kernel.ι_unop, ShortComplex.SnakeInput.op_L₃, kernelUnopUnop_hom, ShortComplex.SnakeInput.op_v₂₃, ShortComplex.SnakeInput.op_v₀₁, cokernelUnopUnop_hom, imageUnopOp_hom_comp_image_ι, cokernelOpUnop_hom, kernel.ι_op, ShortComplex.SnakeInput.op_L₁, kernelOpOp_inv, cokernelUnopOp_inv, kernelOpOp_hom, imageUnopOp_inv_comp_op_factorThruImage, cokernelOpOp_inv
|
kernelOpOp 📖 | CompOp | 3 mathmath: imageToKernel_op, kernelOpOp_inv, kernelOpOp_hom
|
kernelOpUnop 📖 | CompOp | 3 mathmath: kernelOpUnop_hom, kernelOpUnop_inv, kernel.ι_op
|
kernelUnopOp 📖 | CompOp | 3 mathmath: kernelUnopOp_inv, kernelUnopOp_hom, kernel.ι_unop
|
kernelUnopUnop 📖 | CompOp | 3 mathmath: imageToKernel_unop, kernelUnopUnop_inv, kernelUnopUnop_hom
|