Documentation Verification Report

Extend

📁 Source: Mathlib/CategoryTheory/Abelian/Projective/Extend.lean

Statistics

MetricCount
Definitionshom', cochainComplex, cochainComplexXIso, π'
4
Theoremshom'_comp_π', hom'_comp_π'_assoc, hom'_f, hom'_f_assoc, cochainComplex_d, cochainComplex_d_assoc, instIsGECochainComplexOfNatInt, instIsStrictlyLECochainComplexOfNatInt, instProjectiveXIntCochainComplex, instQuasiIsoIntπ', π'_f_zero, π'_f_zero_assoc
12
Total16

CategoryTheory.ProjectiveResolution

Definitions

NameCategoryTheorems
cochainComplex 📖CompOp
26 mathmath: extEquivCohomologyClass_add, extEquivCohomologyClass_symm_sub, cochainComplex_d, extEquivCohomologyClass_sub, extEquivCohomologyClass_symm_mk_hom, extEquivCohomologyClass_zero, extAddEquivCohomologyClass_symm_apply, extMk_hom, instIsKProjectiveCochainComplex, Hom.hom'_f_assoc, π'_f_zero_assoc, Hom.hom'_comp_π', Hom.hom'_f, instIsGECochainComplexOfNatInt, extEquivCohomologyClass_symm_zero, Hom.hom'_comp_π'_assoc, π'_f_zero, instProjectiveXIntCochainComplex, instIsStrictlyLECochainComplexOfNatInt, extAddEquivCohomologyClass_apply, extEquivCohomologyClass_neg, extEquivCohomologyClass_extMk, instQuasiIsoIntπ', extEquivCohomologyClass_symm_add, cochainComplex_d_assoc, extEquivCohomologyClass_symm_neg
cochainComplexXIso 📖CompOp
8 mathmath: cochainComplex_d, extMk_hom, Hom.hom'_f_assoc, π'_f_zero_assoc, Hom.hom'_f, π'_f_zero, extEquivCohomologyClass_extMk, cochainComplex_d_assoc
π' 📖CompOp
7 mathmath: extEquivCohomologyClass_symm_mk_hom, extMk_hom, π'_f_zero_assoc, Hom.hom'_comp_π', Hom.hom'_comp_π'_assoc, π'_f_zero, instQuasiIsoIntπ'

Theorems

NameKindAssumesProvesValidatesDepends On
cochainComplex_d 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
complex
CategoryTheory.Iso.hom
cochainComplexXIso
CategoryTheory.Iso.inv
HomologicalComplex.extend_d_eq
AddRightCancelSemigroup.toIsRightCancelAdd
cochainComplex_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
HomologicalComplex.d
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
complex
CategoryTheory.Iso.hom
cochainComplexXIso
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cochainComplex_d
instIsGECochainComplexOfNatInt 📖mathematicalCochainComplex.IsGE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
cochainComplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.isSupported_iff_of_quasiIso
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
instQuasiIsoIntπ'
HomologicalComplex.instIsSupportedOfIsStrictlySupported
CochainComplex.instIsStrictlyGEObjIntSingleFunctor
instIsStrictlyLECochainComplexOfNatInt 📖mathematicalCochainComplex.IsStrictlyLE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
cochainComplex
CochainComplex.instIsStrictlyLEExtendNatIntEmbeddingDownNatOfNat
instProjectiveXIntCochainComplex 📖mathematicalCategoryTheory.Projective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Projective.of_iso
projective
CategoryTheory.Limits.IsZero.projective
CochainComplex.isZero_of_isStrictlyLE
instIsStrictlyLECochainComplexOfNatInt
instQuasiIsoIntπ' 📖mathematicalQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.singleFunctor
π'
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
quasiIso_comp
HomologicalComplex.extend.instHasHomology
HomologicalComplex.instHasHomologyObjSingle
HomologicalComplex.instQuasiIsoExtendMap
hasHomology
quasiIso
quasiIso_of_isIso
CategoryTheory.Iso.isIso_hom
π'_f_zero 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.singleFunctor
π'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
complex
HomologicalComplex
HomologicalComplex.single
CategoryTheory.Iso.hom
cochainComplexXIso
ChainComplex
ChainComplex.single₀
π
CategoryTheory.Iso.inv
HomologicalComplex.singleObjXSelf
AddRightCancelSemigroup.toIsRightCancelAdd
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
neg_zero
HomologicalComplex.extendMap_f
HomologicalComplex.extendSingleIso_hom_f
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
π'_f_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
cochainComplex
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.singleFunctor
HomologicalComplex.Hom.f
π'
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
complex
CategoryTheory.Iso.hom
cochainComplexXIso
ChainComplex
ChainComplex.single₀
π
CategoryTheory.Iso.inv
HomologicalComplex
HomologicalComplex.single
HomologicalComplex.singleObjXSelf
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π'_f_zero

CategoryTheory.ProjectiveResolution.Hom

Definitions

NameCategoryTheorems
hom' 📖CompOp
4 mathmath: hom'_f_assoc, hom'_comp_π', hom'_f, hom'_comp_π'_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
hom'_comp_π' 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ProjectiveResolution.cochainComplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
CochainComplex.singleFunctor
hom'
CategoryTheory.ProjectiveResolution.π'
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.to_single_hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
hom'_f
CategoryTheory.ProjectiveResolution.π'_f_zero
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
hom_f_zero_comp_π_f_zero
CategoryTheory.Category.id_comp
hom'_comp_π'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ProjectiveResolution.cochainComplex
CategoryTheory.Abelian.hasZeroObject
hom'
CategoryTheory.Functor.obj
CochainComplex.singleFunctor
CategoryTheory.ProjectiveResolution.π'
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom'_comp_π'
hom'_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.ProjectiveResolution.cochainComplex
CategoryTheory.Abelian.hasZeroObject
hom'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.ProjectiveResolution.complex
CategoryTheory.Iso.hom
CategoryTheory.ProjectiveResolution.cochainComplexXIso
hom
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.extendMap_f
hom'_f_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.ProjectiveResolution.cochainComplex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.Hom.f
hom'
ComplexShape.down
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.ProjectiveResolution.complex
CategoryTheory.Iso.hom
CategoryTheory.ProjectiveResolution.cochainComplexXIso
hom
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom'_f

---

← Back to Index