| Name | Category | Theorems |
cochainComplex 📖 | CompOp | 26 mathmath: extEquivCohomologyClass_add, extEquivCohomologyClass_symm_sub, cochainComplex_d, extEquivCohomologyClass_sub, extEquivCohomologyClass_symm_mk_hom, extEquivCohomologyClass_zero, extAddEquivCohomologyClass_symm_apply, extMk_hom, instIsKProjectiveCochainComplex, Hom.hom'_f_assoc, π'_f_zero_assoc, Hom.hom'_comp_π', Hom.hom'_f, instIsGECochainComplexOfNatInt, extEquivCohomologyClass_symm_zero, Hom.hom'_comp_π'_assoc, π'_f_zero, instProjectiveXIntCochainComplex, instIsStrictlyLECochainComplexOfNatInt, extAddEquivCohomologyClass_apply, extEquivCohomologyClass_neg, extEquivCohomologyClass_extMk, instQuasiIsoIntπ', extEquivCohomologyClass_symm_add, cochainComplex_d_assoc, extEquivCohomologyClass_symm_neg
|
cochainComplexXIso 📖 | CompOp | 8 mathmath: cochainComplex_d, extMk_hom, Hom.hom'_f_assoc, π'_f_zero_assoc, Hom.hom'_f, π'_f_zero, extEquivCohomologyClass_extMk, cochainComplex_d_assoc
|
π' 📖 | CompOp | 7 mathmath: extEquivCohomologyClass_symm_mk_hom, extMk_hom, π'_f_zero_assoc, Hom.hom'_comp_π', Hom.hom'_comp_π'_assoc, π'_f_zero, instQuasiIsoIntπ'
|