Documentation Verification Report

Resolution

📁 Source: Mathlib/CategoryTheory/Abelian/Projective/Resolution.lean

Statistics

MetricCount
DefinitionshomotopyEquiv, iso, liftCompHomotopy, liftFOne, liftFSucc, liftFZero, liftHomotopy, liftHomotopyZero, liftHomotopyZeroOne, liftHomotopyZeroSucc, liftHomotopyZeroZero, liftIdHomotopy, of, ofComplex, projectiveResolution, projectiveResolutions
16
Theoremsexact₀, homotopyEquiv_hom_π, homotopyEquiv_hom_π_assoc, homotopyEquiv_inv_π, homotopyEquiv_inv_π_assoc, instHasProjectiveResolution, instHasProjectiveResolutions, instProjectiveXNatOfComplex, iso_hom_naturality, iso_hom_naturality_assoc, iso_inv_naturality, iso_inv_naturality_assoc, liftFOne_zero_comm, liftHomotopyZeroOne_comp, liftHomotopyZeroOne_comp_assoc, liftHomotopyZeroSucc_comp, liftHomotopyZeroSucc_comp_assoc, liftHomotopyZeroZero_comp, liftHomotopyZeroZero_comp_assoc, lift_commutes, lift_commutes_assoc, lift_commutes_zero, lift_commutes_zero_assoc, ofComplex_d_1_0, ofComplex_exactAt_succ, of_def, exact_d_f
27
Total43

CategoryTheory

Definitions

NameCategoryTheorems
projectiveResolution 📖CompOp
projectiveResolutions 📖CompOp
4 mathmath: ProjectiveResolution.iso_hom_naturality_assoc, ProjectiveResolution.iso_hom_naturality, ProjectiveResolution.iso_inv_naturality, ProjectiveResolution.iso_inv_naturality_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
exact_d_f 📖mathematicalShortComplex.Exact
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
Projective.syzygies
Limits.HasKernels.has_limit
Abelian.has_kernels
Projective.d
Limits.HasKernels.has_limit
Abelian.has_kernels
Category.assoc
Limits.kernel.condition
Limits.comp_zero
Category.comp_id
Category.id_comp
ShortComplex.exact_iff_of_epi_of_isIso_of_mono
Projective.π_epi
IsIso.id
instMonoId
ShortComplex.exact_of_f_is_kernel
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian

CategoryTheory.ProjectiveResolution

Definitions

NameCategoryTheorems
homotopyEquiv 📖CompOp
4 mathmath: homotopyEquiv_inv_π_assoc, homotopyEquiv_hom_π, homotopyEquiv_inv_π, homotopyEquiv_hom_π_assoc
iso 📖CompOp
4 mathmath: iso_hom_naturality_assoc, iso_hom_naturality, iso_inv_naturality, iso_inv_naturality_assoc
liftCompHomotopy 📖CompOp
liftFOne 📖CompOp
1 mathmath: liftFOne_zero_comm
liftFSucc 📖CompOp
liftFZero 📖CompOp
1 mathmath: liftFOne_zero_comm
liftHomotopy 📖CompOp
liftHomotopyZero 📖CompOp
liftHomotopyZeroOne 📖CompOp
2 mathmath: liftHomotopyZeroOne_comp_assoc, liftHomotopyZeroOne_comp
liftHomotopyZeroSucc 📖CompOp
2 mathmath: liftHomotopyZeroSucc_comp, liftHomotopyZeroSucc_comp_assoc
liftHomotopyZeroZero 📖CompOp
4 mathmath: liftHomotopyZeroZero_comp, liftHomotopyZeroOne_comp_assoc, liftHomotopyZeroZero_comp_assoc, liftHomotopyZeroOne_comp
liftIdHomotopy 📖CompOp
of 📖CompOp
1 mathmath: of_def
ofComplex 📖CompOp
4 mathmath: ofComplex_d_1_0, instProjectiveXNatOfComplex, of_def, ofComplex_exactAt_succ

Theorems

NameKindAssumesProvesValidatesDepends On
exact₀ 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.d
HomologicalComplex.Hom.f
π
complex_d_comp_π_f_zero
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
AddRightCancelSemigroup.toIsRightCancelAdd
complex_d_comp_π_f_zero
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
homotopyEquiv_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
ChainComplex.single₀
HomotopyEquiv.hom
homotopyEquiv
π
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
lift_commutes
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
homotopyEquiv_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
complex
CategoryTheory.Abelian.hasZeroObject
HomotopyEquiv.hom
homotopyEquiv
CategoryTheory.Functor.obj
ChainComplex
ChainComplex.single₀
π
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homotopyEquiv_hom_π
homotopyEquiv_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
ChainComplex.single₀
HomotopyEquiv.inv
homotopyEquiv
π
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
lift_commutes
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
homotopyEquiv_inv_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
complex
CategoryTheory.Abelian.hasZeroObject
HomotopyEquiv.inv
homotopyEquiv
CategoryTheory.Functor.obj
ChainComplex
ChainComplex.single₀
π
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homotopyEquiv_inv_π
instHasProjectiveResolution 📖mathematicalCategoryTheory.HasProjectiveResolution
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.hasZeroObject
instHasProjectiveResolutions 📖mathematicalCategoryTheory.HasProjectiveResolutions
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.hasZeroObject
instHasProjectiveResolution
instProjectiveXNatOfComplex 📖mathematicalCategoryTheory.Projective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ofComplex
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Projective.projective_over
iso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
π
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.projectiveResolutions
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
iso_inv_naturality_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
iso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
π
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.projectiveResolutions
CategoryTheory.Functor.map
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Iso.hom
iso
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_naturality
iso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
π
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.projectiveResolutions
CategoryTheory.Iso.inv
iso
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.eq_of_homotopy
CategoryTheory.Category.assoc
lift_commutes
homotopyEquiv_inv_π_assoc
homotopyEquiv_inv_π
HomologicalComplex.to_single_hom_ext
ChainComplex.single₀_map_f_zero
iso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
π
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.projectiveResolutions
CategoryTheory.Iso.inv
iso
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_naturality
liftFOne_zero_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
liftFOne
HomologicalComplex.d
liftFZero
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.ShortComplex.Exact.liftFromProjective_comp
AddRightCancelSemigroup.toIsRightCancelAdd
complex_d_comp_π_f_zero
exact₀
liftHomotopyZeroOne_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex.single₀
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
liftHomotopyZeroOne
HomologicalComplex.d
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
HomologicalComplex.Hom.f
liftHomotopyZeroZero
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.Exact.liftFromProjective_comp
HomologicalComplex.d_comp_d
exact_succ
liftHomotopyZeroOne_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex.single₀
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
liftHomotopyZeroOne
HomologicalComplex.d
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
HomologicalComplex.Hom.f
liftHomotopyZeroZero
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftHomotopyZeroOne_comp
liftHomotopyZeroSucc_comp 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
liftHomotopyZeroSucc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.Exact.liftFromProjective_comp
HomologicalComplex.d_comp_d
exact_succ
liftHomotopyZeroSucc_comp_assoc 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
liftHomotopyZeroSucc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftHomotopyZeroSucc_comp
liftHomotopyZeroZero_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex.single₀
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
liftHomotopyZeroZero
HomologicalComplex.d
HomologicalComplex.Hom.f
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.Exact.liftFromProjective_comp
complex_d_comp_π_f_zero
exact₀
liftHomotopyZeroZero_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex.single₀
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
HomologicalComplex.X
liftHomotopyZeroZero
HomologicalComplex.d
HomologicalComplex.Hom.f
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftHomotopyZeroZero_comp
lift_commutes 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex.single₀
lift
π
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.to_single_hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Projective.factorThru_comp
ChainComplex.single₀_map_f_zero
lift_commutes_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
complex
CategoryTheory.Abelian.hasZeroObject
lift
CategoryTheory.Functor.obj
ChainComplex.single₀
π
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_commutes
lift_commutes_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
HomologicalComplex.Hom.f
lift
π
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.congr_hom
lift_commutes
ChainComplex.single₀_map_f_zero
lift_commutes_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
complex
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.Hom.f
lift
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
π
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_commutes_zero
ofComplex_d_1_0 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ofComplex
CategoryTheory.Projective.d
CategoryTheory.Projective.over
CategoryTheory.Projective.π
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
ChainComplex.mk'_d_1_0
ofComplex_exactAt_succ 📖mathematicalHomologicalComplex.ExactAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ofComplex
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.exactAt_iff'
ChainComplex.prev
ChainComplex.next_nat_succ
HomologicalComplex.d_comp_d
ChainComplex.of_d
CategoryTheory.exact_d_f
of_def 📖mathematicalof
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ofComplex
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
CategoryTheory.Limits.HasZeroMorphisms.zero
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
ChainComplex.single₀
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ChainComplex.toSingle₀Equiv
CategoryTheory.Projective.π
CategoryTheory.Abelian.hasZeroObject

---

← Back to Index