Documentation Verification Report

Pseudoelements

📁 Source: Mathlib/CategoryTheory/Abelian/Pseudoelements.lean

Statistics

MetricCount
DefinitionsPseudoEqual, hasZero, homToFun, instInhabited, objectToSort, overToSort, pseudoApply, pseudoZero, setoid, app
10
Theoremseq_range_of_pseudoequal, apply_eq_zero_of_comp_eq_zero, apply_zero, comp_apply, comp_comp, epi_of_pseudo_surjective, eq_zero_iff, exact_of_pseudo_exact, mono_of_zero_of_map_zero, over_coe_def, pseudoApply_aux, pseudoApply_mk', pseudoZero_aux, pseudoZero_def, pseudoZero_iff, pseudo_exact_of_exact, pseudo_injective_of_mono, pseudo_pullback, pseudo_surjective_of_epi, sub_of_eq_image, zero_apply, zero_eq_zero, zero_eq_zero', zero_morphism_ext, zero_morphism_ext', zero_of_map_zero, app_hom, pseudoEqual_refl, pseudoEqual_symm, pseudoEqual_trans
30
Total40

CategoryTheory.Abelian

Definitions

NameCategoryTheorems
PseudoEqual 📖MathDef
6 mathmath: Pseudoelement.pseudoZero_iff, pseudoEqual_refl, pseudoEqual_symm, pseudoEqual_trans, Pseudoelement.apply_eq_zero_of_comp_eq_zero, Pseudoelement.over_coe_def
app 📖CompOp
2 mathmath: Pseudoelement.pseudoApply_aux, app_hom

Theorems

NameKindAssumesProvesValidatesDepends On
app_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
app
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
pseudoEqual_refl 📖mathematicalReflexive
CategoryTheory.Over
PseudoEqual
CategoryTheory.instEpiId
CategoryTheory.Category.id_comp
pseudoEqual_symm 📖mathematicalSymmetric
CategoryTheory.Over
PseudoEqual
pseudoEqual_trans 📖mathematicalTransitive
CategoryTheory.Over
PseudoEqual
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
hasFiniteLimits
CategoryTheory.epi_comp
epi_pullback_of_epi_g
epi_pullback_of_epi_f
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.condition

CategoryTheory.Abelian.Pseudoelement

Definitions

NameCategoryTheorems
hasZero 📖CompOp
8 mathmath: pseudoZero_def, apply_zero, pseudoZero_iff, sub_of_eq_image, zero_eq_zero, eq_zero_iff, apply_eq_zero_of_comp_eq_zero, zero_apply
homToFun 📖CompOp
instInhabited 📖CompOp
objectToSort 📖CompOp
overToSort 📖CompOp
pseudoApply 📖CompOp
9 mathmath: apply_zero, comp_apply, pseudoApply_mk', pseudo_surjective_of_epi, comp_comp, eq_zero_iff, apply_eq_zero_of_comp_eq_zero, zero_apply, pseudo_injective_of_mono
pseudoZero 📖CompOp
setoid 📖CompOp
6 mathmath: pseudoZero_def, zero_eq_zero', pseudoApply_mk', zero_eq_zero, pseudoZero_aux, over_coe_def

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_zero_of_comp_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
pseudoApply
CategoryTheory.Over
CategoryTheory.Abelian.PseudoEqual
CategoryTheory.Abelian.Pseudoelement
hasZero
zero_eq_zero
apply_zero 📖mathematicalpseudoApply
CategoryTheory.Abelian.Pseudoelement
hasZero
pseudoZero_def
pseudoApply_mk'
CategoryTheory.Limits.zero_comp
zero_eq_zero
comp_apply 📖mathematicalpseudoApply
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
CategoryTheory.Over.coe_hom
comp_comp 📖mathematicalCategoryTheory.Abelian.Pseudoelement
pseudoApply
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp_apply
epi_of_pseudo_surjective 📖mathematicalCategoryTheory.Abelian.Pseudoelement
pseudoApply
CategoryTheory.EpiCategoryTheory.epi_of_epi_fac
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
eq_zero_iff 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
pseudoApply
CategoryTheory.Abelian.Pseudoelement
hasZero
zero_apply
zero_morphism_ext
exact_of_pseudo_exact 📖mathematicalpseudoApply
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.ExactCategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
apply_eq_zero_of_comp_eq_zero
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Category.assoc
CategoryTheory.Abelian.image.fac
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Limits.pullback.snd_of_mono
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.epi_of_epi_fac
CategoryTheory.Iso.eq_inv_comp
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
mono_of_zero_of_map_zero 📖mathematicalCategoryTheory.Abelian.Pseudoelement
hasZero
CategoryTheory.MonoCategoryTheory.Preadditive.mono_iff_cancel_zero
pseudoZero_iff
over_coe_def 📖mathematicalCategoryTheory.Over
CategoryTheory.Abelian.PseudoEqual
setoid
pseudoApply_aux 📖mathematicalCategoryTheory.Over
setoid
CategoryTheory.Abelian.appCategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pseudoApply_mk' 📖mathematicalpseudoApply
CategoryTheory.Over
setoid
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
pseudoZero_aux 📖mathematicalCategoryTheory.Over
setoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Limits.zero_of_epi_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Limits.HasBinaryBiproducts.of_hasBinaryProducts
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Abelian.has_finite_products
Finite.of_fintype
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.instIsRegularEpiOfIsSplitEpi
CategoryTheory.Limits.biprod.fst_epi
CategoryTheory.Limits.biprod.snd_epi
CategoryTheory.Over.coe_hom
CategoryTheory.Limits.HasZeroMorphisms.comp_zero
pseudoZero_def 📖mathematicalCategoryTheory.Abelian.Pseudoelement
hasZero
CategoryTheory.Over
setoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
pseudoZero_iff 📖mathematicalCategoryTheory.Over
CategoryTheory.Abelian.PseudoEqual
CategoryTheory.Abelian.Pseudoelement
hasZero
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
pseudoZero_aux
Quotient.eq'
pseudo_exact_of_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
pseudoApply
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Abelian.Pseudoelement
hasZero
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
pseudoZero_iff
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Abelian.image_ι_comp_eq_zero
CategoryTheory.ShortComplex.zero
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.instEpiId
CategoryTheory.Abelian.epi_pullback_of_epi_f
CategoryTheory.Abelian.instEpiFactorThruImage
CategoryTheory.Category.id_comp
CategoryTheory.Abelian.image.fac
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.condition
pseudo_injective_of_mono 📖mathematicalCategoryTheory.Abelian.Pseudoelement
pseudoApply
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
pseudo_pullback 📖mathematicalpseudoApplyCategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.instEpiId
CategoryTheory.Category.id_comp
pseudo_surjective_of_epi 📖mathematicalCategoryTheory.Abelian.Pseudoelement
pseudoApply
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.instEpiId
CategoryTheory.Abelian.epi_pullback_of_epi_f
CategoryTheory.Category.id_comp
CategoryTheory.Limits.pullback.condition
CategoryTheory.Abelian.app_hom
CategoryTheory.Over.coe_hom
sub_of_eq_image 📖mathematicalpseudoApplyCategoryTheory.Abelian.Pseudoelement
hasZero
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Category.assoc
sub_eq_zero
zero_eq_zero
CategoryTheory.Preadditive.epi_iff_cancel_zero
CategoryTheory.Limits.comp_zero
CategoryTheory.instEpiId
sub_eq_add_neg
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.neg_comp
neg_zero
add_zero
CategoryTheory.Category.id_comp
zero_apply 📖mathematicalpseudoApply
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.Pseudoelement
hasZero
pseudoZero_def
pseudoApply_mk'
CategoryTheory.Limits.comp_zero
zero_eq_zero
zero_eq_zero 📖mathematicalCategoryTheory.Over
setoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.Pseudoelement
hasZero
zero_eq_zero'
zero_eq_zero' 📖mathematicalCategoryTheory.Over
setoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
pseudoZero_aux
zero_morphism_ext 📖mathematicalpseudoApply
CategoryTheory.Abelian.Pseudoelement
hasZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.id_comp
pseudoZero_iff
zero_morphism_ext' 📖mathematicalpseudoApply
CategoryTheory.Abelian.Pseudoelement
hasZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
zero_morphism_ext
zero_of_map_zero 📖CategoryTheory.Abelian.Pseudoelement
pseudoApply
hasZero
apply_zero

CategoryTheory.Abelian.Pseudoelement.ModuleCat

Theorems

NameKindAssumesProvesValidatesDepends On
eq_range_of_pseudoequal 📖mathematicalCategoryTheory.Abelian.PseudoEqual
ModuleCat
ModuleCat.moduleCategory
LinearMap.range
ModuleCat.carrier
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
ModuleCat.Hom.hom
CategoryTheory.Comma.hom
RingHomSurjective.ids
Submodule.ext
ModuleCat.epi_iff_surjective
RingHomCompTriple.ids
LinearMap.comp_apply
ModuleCat.hom_comp

---

← Back to Index