Documentation Verification Report

Refinements

📁 Source: Mathlib/CategoryTheory/Abelian/Refinements.lean

Statistics

MetricCount
Definitions0
Theoremsexact_up_to_refinements, eq_liftCycles_homologyπ_up_to_refinements, exact_iff_exact_up_to_refinements, epi_iff_surjective_up_to_refinements, surjective_up_to_refinements_of_epi
5
Total5

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_surjective_up_to_refinements 📖mathematicalEpi
CategoryStruct.comp
Category.toCategoryStruct
Limits.hasLimitOfHasLimitsOfShape
Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
Abelian.hasFiniteLimits
Abelian.epi_pullback_of_epi_g
Limits.pullback.condition
epi_of_epi_fac
Category.comp_id
surjective_up_to_refinements_of_epi 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
epi_iff_surjective_up_to_refinements

CategoryTheory.ShortComplex

Theorems

NameKindAssumesProvesValidatesDepends On
eq_liftCycles_homologyπ_up_to_refinements 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
cycles
hasLeftHomology_of_hasHomology
liftCycles
homologyπ
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
hasLeftHomology_of_hasHomology
CategoryTheory.surjective_up_to_refinements_of_epi
instEpiHomologyπ
CategoryTheory.Category.assoc
iCycles_g
CategoryTheory.Limits.comp_zero
CategoryTheory.cancel_mono
instMonoICycles
liftCycles_i
exact_iff_exact_up_to_refinements 📖mathematicalExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
X₁
f
hasLeftHomology_of_hasHomology
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_iff_epi_toCycles
CategoryTheory.epi_iff_surjective_up_to_refinements
CategoryTheory.Category.assoc
liftCycles_i
toCycles_i
CategoryTheory.eq_whisker
iCycles_g
CategoryTheory.Limits.comp_zero
CategoryTheory.cancel_mono
instMonoICycles

CategoryTheory.ShortComplex.Exact

Theorems

NameKindAssumesProvesValidatesDepends On
exact_up_to_refinements 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.exact_iff_exact_up_to_refinements

---

← Back to Index