Documentation Verification Report

RightDerived

📁 Source: Mathlib/CategoryTheory/Abelian/RightDerived.lean

Statistics

MetricCount
DefinitionsrightDerived, rightDerivedToHomotopyCategory, rightDerivedZeroIsoSelf, toRightDerivedZero, isoRightDerivedObj, isoRightDerivedToHomotopyCategoryObj, toRightDerivedZero', rightDerived, rightDerivedToHomotopyCategory
9
TheoremsisZero_rightDerived_obj_injective_succ, rightDerivedZeroIsoSelf_hom_inv_id, rightDerivedZeroIsoSelf_hom_inv_id_app, rightDerivedZeroIsoSelf_hom_inv_id_app_assoc, rightDerivedZeroIsoSelf_hom_inv_id_assoc, rightDerivedZeroIsoSelf_inv, rightDerivedZeroIsoSelf_inv_hom_id, rightDerivedZeroIsoSelf_inv_hom_id_app, rightDerivedZeroIsoSelf_inv_hom_id_app_assoc, rightDerivedZeroIsoSelf_inv_hom_id_assoc, rightDerived_map_eq, instIsIsoToRightDerivedZero'Self, isoRightDerivedObj_hom_naturality, isoRightDerivedObj_hom_naturality_assoc, isoRightDerivedObj_inv_naturality, isoRightDerivedObj_inv_naturality_assoc, isoRightDerivedToHomotopyCategoryObj_hom_naturality, isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, isoRightDerivedToHomotopyCategoryObj_inv_naturality, isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, rightDerivedToHomotopyCategory_app_eq, rightDerived_app_eq, toRightDerivedZero'_comp_iCycles, toRightDerivedZero'_comp_iCycles_assoc, toRightDerivedZero'_naturality, toRightDerivedZero'_naturality_assoc, toRightDerivedZero_eq, rightDerivedToHomotopyCategory_comp, rightDerivedToHomotopyCategory_comp_assoc, rightDerivedToHomotopyCategory_id, rightDerived_comp, rightDerived_comp_assoc, rightDerived_id, instIsIsoAppToRightDerivedZero, instIsIsoAppToRightDerivedZeroOfInjective, instIsIsoFunctorToRightDerivedZero, instIsIsoToRightDerivedZero'
37
Total46

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoAppToRightDerivedZero 📖mathematicalIsIso
Functor.obj
Functor.rightDerived
NatTrans.app
Functor.toRightDerivedZero
Abelian.hasZeroObject
categoryWithHomology_of_abelian
IsIso.comp_isIso
instIsIsoToRightDerivedZero'
CochainComplex.isIso_homologyπ₀
NatIso.inv_app_isIso
instIsIsoAppToRightDerivedZeroOfInjective 📖mathematicalIsIso
Functor.obj
Functor.rightDerived
NatTrans.app
Functor.toRightDerivedZero
Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
Functor.preservesZeroMorphisms_of_additive
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
InjectiveResolution.toRightDerivedZero_eq
IsIso.comp_isIso
InjectiveResolution.instIsIsoToRightDerivedZero'Self
Iso.isIso_hom
Iso.isIso_inv
instIsIsoFunctorToRightDerivedZero 📖mathematicalIsIso
Functor
Functor.category
Functor.rightDerived
Functor.toRightDerivedZero
Abelian.hasZeroObject
NatIso.isIso_of_isIso_app
instIsIsoAppToRightDerivedZero
instIsIsoToRightDerivedZero' 📖mathematicalIsIso
Functor.obj
HomologicalComplex.cycles
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex
HomologicalComplex.instCategory
Functor.mapHomologicalComplex
Functor.preservesZeroMorphisms_of_additive
InjectiveResolution.cocomplex
Abelian.hasZeroObject
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
HomologicalComplex.sc
InjectiveResolution.toRightDerivedZero'
Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
Functor.preservesZeroMorphisms_of_additive
CategoryWithHomology.hasHomology
categoryWithHomology_of_abelian
CochainComplex.isIso_liftCycles_iff
ShortComplex.zero
ShortComplex.exact_and_mono_f_iff_f_is_kernel
balanced_of_strongMonoCategory
strongMonoCategory_of_regularMonoCategory
regularMonoCategoryOfNormalMonoCategory
Abelian.toIsNormalMonoCategory
Limits.PreservesLimitsOfShape.preservesLimit
Limits.PreservesFiniteLimits.preservesFiniteLimits

CategoryTheory.Functor

Definitions

NameCategoryTheorems
rightDerived 📖CompOp
23 mathmath: CategoryTheory.NatTrans.rightDerived_comp_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.instIsIsoAppToRightDerivedZeroOfInjective, CategoryTheory.NatTrans.rightDerived_comp, rightDerivedZeroIsoSelf_hom_inv_id, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality, rightDerivedZeroIsoSelf_hom_inv_id_app, rightDerivedZeroIsoSelf_hom_inv_id_app_assoc, rightDerivedZeroIsoSelf_inv_hom_id_app_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality, CategoryTheory.instIsIsoAppToRightDerivedZero, rightDerivedZeroIsoSelf_inv_hom_id_app, CategoryTheory.instIsIsoFunctorToRightDerivedZero, rightDerived_map_eq, CategoryTheory.NatTrans.rightDerived_id, rightDerivedZeroIsoSelf_inv, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality_assoc, rightDerivedZeroIsoSelf_inv_hom_id_assoc, rightDerivedZeroIsoSelf_hom_inv_id_assoc, isZero_rightDerived_obj_injective_succ, rightDerivedZeroIsoSelf_inv_hom_id, CategoryTheory.InjectiveResolution.rightDerived_app_eq
rightDerivedToHomotopyCategory 📖CompOp
8 mathmath: CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_id, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq
rightDerivedZeroIsoSelf 📖CompOp
9 mathmath: rightDerivedZeroIsoSelf_hom_inv_id, rightDerivedZeroIsoSelf_hom_inv_id_app, rightDerivedZeroIsoSelf_hom_inv_id_app_assoc, rightDerivedZeroIsoSelf_inv_hom_id_app_assoc, rightDerivedZeroIsoSelf_inv_hom_id_app, rightDerivedZeroIsoSelf_inv, rightDerivedZeroIsoSelf_inv_hom_id_assoc, rightDerivedZeroIsoSelf_hom_inv_id_assoc, rightDerivedZeroIsoSelf_inv_hom_id
toRightDerivedZero 📖CompOp
13 mathmath: CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.instIsIsoAppToRightDerivedZeroOfInjective, rightDerivedZeroIsoSelf_hom_inv_id, rightDerivedZeroIsoSelf_hom_inv_id_app, rightDerivedZeroIsoSelf_hom_inv_id_app_assoc, rightDerivedZeroIsoSelf_inv_hom_id_app_assoc, CategoryTheory.instIsIsoAppToRightDerivedZero, rightDerivedZeroIsoSelf_inv_hom_id_app, CategoryTheory.instIsIsoFunctorToRightDerivedZero, rightDerivedZeroIsoSelf_inv, rightDerivedZeroIsoSelf_inv_hom_id_assoc, rightDerivedZeroIsoSelf_hom_inv_id_assoc, rightDerivedZeroIsoSelf_inv_hom_id

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_rightDerived_obj_injective_succ 📖mathematicalCategoryTheory.Limits.IsZero
obj
rightDerived
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.IsZero.of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
preservesZeroMorphisms_of_additive
HomologicalComplex.exactAt_iff_isZero_homology
CategoryTheory.ShortComplex.exact_of_isZero_X₂
map_isZero
CategoryTheory.Limits.isZero_zero
rightDerivedZeroIsoSelf_hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
rightDerived
CategoryTheory.Iso.hom
rightDerivedZeroIsoSelf
toRightDerivedZero
CategoryTheory.CategoryStruct.id
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom_inv_id
rightDerivedZeroIsoSelf_hom_inv_id_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightDerived
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightDerivedZeroIsoSelf
toRightDerivedZero
CategoryTheory.CategoryStruct.id
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom_inv_id_app
rightDerivedZeroIsoSelf_hom_inv_id_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightDerived
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightDerivedZeroIsoSelf
toRightDerivedZero
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedZeroIsoSelf_hom_inv_id_app
rightDerivedZeroIsoSelf_hom_inv_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
rightDerived
CategoryTheory.Iso.hom
rightDerivedZeroIsoSelf
toRightDerivedZero
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedZeroIsoSelf_hom_inv_id
rightDerivedZeroIsoSelf_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightDerived
rightDerivedZeroIsoSelf
toRightDerivedZero
CategoryTheory.Abelian.hasZeroObject
rightDerivedZeroIsoSelf_inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
rightDerived
toRightDerivedZero
CategoryTheory.Iso.hom
rightDerivedZeroIsoSelf
CategoryTheory.CategoryStruct.id
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.inv_hom_id
rightDerivedZeroIsoSelf_inv_hom_id_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightDerived
CategoryTheory.NatTrans.app
toRightDerivedZero
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightDerivedZeroIsoSelf
CategoryTheory.CategoryStruct.id
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.inv_hom_id_app
rightDerivedZeroIsoSelf_inv_hom_id_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightDerived
CategoryTheory.NatTrans.app
toRightDerivedZero
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightDerivedZeroIsoSelf
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedZeroIsoSelf_inv_hom_id_app
rightDerivedZeroIsoSelf_inv_hom_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
rightDerived
toRightDerivedZero
CategoryTheory.Iso.hom
rightDerivedZeroIsoSelf
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedZeroIsoSelf_inv_hom_id
rightDerived_map_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
obj
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.InjectiveResolution.cocomplex
CategoryTheory.InjectiveResolution.ι
map
rightDerived
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
CategoryTheory.InjectiveResolution.isoRightDerivedObj
comp
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
preservesZeroMorphisms_of_additive
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality
HomologicalComplex.comp_f
CochainComplex.single₀_map_f_zero
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id

CategoryTheory.InjectiveResolution

Definitions

NameCategoryTheorems
isoRightDerivedObj 📖CompOp
7 mathmath: toRightDerivedZero_eq, isoRightDerivedObj_hom_naturality, isoRightDerivedObj_hom_naturality_assoc, isoRightDerivedObj_inv_naturality, CategoryTheory.Functor.rightDerived_map_eq, isoRightDerivedObj_inv_naturality_assoc, rightDerived_app_eq
isoRightDerivedToHomotopyCategoryObj 📖CompOp
5 mathmath: isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, isoRightDerivedToHomotopyCategoryObj_inv_naturality, isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, isoRightDerivedToHomotopyCategoryObj_hom_naturality, rightDerivedToHomotopyCategory_app_eq
toRightDerivedZero' 📖CompOp
7 mathmath: toRightDerivedZero'_naturality_assoc, toRightDerivedZero'_comp_iCycles, CategoryTheory.instIsIsoToRightDerivedZero', toRightDerivedZero_eq, instIsIsoToRightDerivedZero'Self, toRightDerivedZero'_naturality, toRightDerivedZero'_comp_iCycles_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoToRightDerivedZero'Self 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
HomologicalComplex.cycles
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
cocomplex
CategoryTheory.Abelian.hasZeroObject
self
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
toRightDerivedZero'
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CochainComplex.isIso_liftCycles_iff
CategoryTheory.ShortComplex.Splitting.exact
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Functor.map_isZero
CategoryTheory.Limits.isZero_zero
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.comp_zero
add_zero
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.instIsSplitMonoMap
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.IsIso.id
isoRightDerivedObj_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
CategoryTheory.Functor.rightDerived
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
isoRightDerivedObj
CategoryTheory.Functor.comp
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
isoRightDerivedToHomotopyCategoryObj_hom_naturality
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality
isoRightDerivedObj_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
CategoryTheory.Functor.rightDerived
CategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
isoRightDerivedObj
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoRightDerivedObj_hom_naturality
isoRightDerivedObj_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.rightDerived
CategoryTheory.Iso.inv
isoRightDerivedObj
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
isoRightDerivedObj_hom_naturality
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
isoRightDerivedObj_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomologicalComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.rightDerived
CategoryTheory.Iso.inv
isoRightDerivedObj
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoRightDerivedObj_inv_naturality
isoRightDerivedToHomotopyCategoryObj_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.rightDerivedToHomotopyCategory
HomologicalComplex
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.quotient
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
isoRightDerivedToHomotopyCategoryObj
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.map_comp_assoc
iso_hom_naturality
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.rightDerivedToHomotopyCategory
CategoryTheory.Functor.map
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
isoRightDerivedToHomotopyCategoryObj
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoRightDerivedToHomotopyCategoryObj_hom_naturality
isoRightDerivedToHomotopyCategoryObj_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.quotient
CategoryTheory.Functor.rightDerivedToHomotopyCategory
CategoryTheory.Iso.inv
isoRightDerivedToHomotopyCategoryObj
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex
HomotopyCategory.quotient
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.rightDerivedToHomotopyCategory
CategoryTheory.Iso.inv
isoRightDerivedToHomotopyCategoryObj
CategoryTheory.Functor.map
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoRightDerivedToHomotopyCategoryObj_inv_naturality
rightDerivedToHomotopyCategory_app_eq 📖mathematicalCategoryTheory.NatTrans.app
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Functor.rightDerivedToHomotopyCategory
CategoryTheory.NatTrans.rightDerivedToHomotopyCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.quotient
cocomplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom
isoRightDerivedToHomotopyCategoryObj
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.map
CategoryTheory.NatTrans.mapHomologicalComplex
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
CategoryTheory.NatTrans.mapHomologicalComplex_naturality
rightDerived_app_eq 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.rightDerived
CategoryTheory.NatTrans.rightDerived
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.instCategory
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
cocomplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Iso.hom
isoRightDerivedObj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.mapHomologicalComplex
CategoryTheory.Iso.inv
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
rightDerivedToHomotopyCategory_app_eq
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
toRightDerivedZero'_comp_iCycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex.cycles
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
cocomplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.X
toRightDerivedZero'
HomologicalComplex.iCycles
CategoryTheory.Functor.map
CochainComplex
CochainComplex.single₀
HomologicalComplex.Hom.f
ι
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.liftCycles_i
toRightDerivedZero'_comp_iCycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex.cycles
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
cocomplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
toRightDerivedZero'
HomologicalComplex.X
HomologicalComplex.iCycles
CategoryTheory.Functor.map
CochainComplex
CochainComplex.single₀
HomologicalComplex.Hom.f
ι
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toRightDerivedZero'_comp_iCycles
toRightDerivedZero'_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
HomologicalComplex.cycles
HomologicalComplex
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.Functor.map
toRightDerivedZero'
HomologicalComplex.cyclesMap
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.cancel_mono
HomologicalComplex.instMonoICycles
CategoryTheory.Category.assoc
toRightDerivedZero'_comp_iCycles
CategoryTheory.Functor.map_comp
HomologicalComplex.cyclesMap_i
toRightDerivedZero'_comp_iCycles_assoc
toRightDerivedZero'_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CochainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
cocomplex
HomologicalComplex.Hom.f
ι
CategoryTheory.Functor.map
HomologicalComplex.cycles
HomologicalComplex
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
toRightDerivedZero'
HomologicalComplex.cyclesMap
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toRightDerivedZero'_naturality
toRightDerivedZero_eq 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.rightDerived
CategoryTheory.Functor.toRightDerivedZero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex.cycles
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
cocomplex
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
toRightDerivedZero'
HomologicalComplex.homology
CategoryTheory.Iso.hom
CochainComplex.isoHomologyπ₀
CategoryTheory.Iso.inv
HomologicalComplex.homologyFunctor
isoRightDerivedObj
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.HasInjectiveResolutions.out
toRightDerivedZero'_naturality
desc_commutes_zero
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.instIsSplitMonoMap
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
Mathlib.Tactic.Reassoc.eq_whisker'
HomologicalComplex.homologyπ_naturality_assoc
CategoryTheory.NatTrans.naturality

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
rightDerived 📖CompOp
4 mathmath: rightDerived_comp_assoc, rightDerived_comp, rightDerived_id, CategoryTheory.InjectiveResolution.rightDerived_app_eq
rightDerivedToHomotopyCategory 📖CompOp
4 mathmath: rightDerivedToHomotopyCategory_id, rightDerivedToHomotopyCategory_comp_assoc, rightDerivedToHomotopyCategory_comp, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq

Theorems

NameKindAssumesProvesValidatesDepends On
rightDerivedToHomotopyCategory_comp 📖mathematicalrightDerivedToHomotopyCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Functor.rightDerivedToHomotopyCategory
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
rightDerivedToHomotopyCategory_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightDerivedToHomotopyCategory
rightDerivedToHomotopyCategory
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedToHomotopyCategory_comp
rightDerivedToHomotopyCategory_id 📖mathematicalrightDerivedToHomotopyCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
instCategoryHomotopyCategory
CategoryTheory.Functor.rightDerivedToHomotopyCategory
CategoryTheory.Abelian.hasZeroObject
AddRightCancelSemigroup.toIsRightCancelAdd
rightDerived_comp 📖mathematicalrightDerived
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightDerived
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.whiskerRight_comp
rightDerived_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightDerived
rightDerived
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerived_comp
rightDerived_id 📖mathematicalrightDerived
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.rightDerived
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.whiskerRight_id'

---

← Back to Index