📁 Source: Mathlib/CategoryTheory/Abelian/SerreClass/MorphismProperty.lean
epiModSerre
isoModSerre
monoModSerre
epiModSerre_iff
epiModSerre_of_epi
epiModSerre_zero_iff
epimorphisms_le_epiModSerre
instHasTwoOutOfThreePropertyIsoModSerre
instIsMultiplicativeEpiModSerre
instIsMultiplicativeIsoModSerre
instIsMultiplicativeMonoModSerre
instIsStableUnderBaseChangeEpiModSerre
instIsStableUnderBaseChangeIsoModSerre
instIsStableUnderBaseChangeMonoModSerre
instIsStableUnderCobaseChangeEpiModSerre
instIsStableUnderCobaseChangeIsoModSerre
instIsStableUnderCobaseChangeMonoModSerre
instIsStableUnderRetractsEpiModSerre
instIsStableUnderRetractsIsoModSerre
instIsStableUnderRetractsMonoModSerre
isoModSerre_iff
isoModSerre_iff_of_epi
isoModSerre_iff_of_mono
isoModSerre_isInvertedBy_iff
isoModSerre_of_epi
isoModSerre_of_isIso
isoModSerre_of_mono
isoModSerre_zero_iff
isomorphisms_le_isoModSerre
le_kernel_of_isoModSerre_isInvertedBy
monoModSerre_iff
monoModSerre_of_mono
monoModSerre_zero_iff
monomorphisms_le_monoModSerre
CategoryTheory.Abelian.isoModSerre_kernel_eq_isLocal_of_rightAdjoint
CategoryTheory.Abelian.isoModSerre_kernel_eq_leftBousfield_W_of_rightAdjoint
CategoryTheory.Abelian.isLocalization_isoModSerre_kernel_of_leftAdjoint
CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms
CategoryTheory.Limits.cokernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.MorphismProperty.epimorphisms.infer_property
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
prop_iff_of_iso
instIsClosedUnderIsomorphisms_1
IsSerreClass.toIsClosedUnderQuotients
CategoryTheory.MorphismProperty
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.epimorphisms
prop_of_isZero
IsSerreClass.toContainsZero
CategoryTheory.Limits.isZero_cokernel_of_epi
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
prop_of_mono
IsSerreClass.toIsClosedUnderSubobjects
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Category.id_comp
CategoryTheory.Limits.kernel.lift_mono
CategoryTheory.mono_comp
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.instMonoId
prop_X₂_of_exact
CategoryTheory.ComposableArrows.Exact.toIsComplex
CategoryTheory.kernelCokernelCompSequence_exact
CategoryTheory.ComposableArrows.Exact.exact
prop_of_epi
CategoryTheory.Category.comp_id
CategoryTheory.Limits.cokernel.desc_epi
CategoryTheory.epi_comp
CategoryTheory.instEpiId
CategoryTheory.Limits.coequalizer.π_epi
CategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.IsMultiplicative.inf
CategoryTheory.MorphismProperty.IsStableUnderBaseChange
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.IsPullback.flip
CategoryTheory.Abelian.mono_cokernel_map_of_isPullback
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
CategoryTheory.Limits.isIso_kernel_map_of_isPullback
prop_of_iso
CategoryTheory.MorphismProperty.IsStableUnderCobaseChange
CategoryTheory.IsPushout.toCommSq
CategoryTheory.IsPushout.flip
CategoryTheory.Limits.isIso_cokernel_map_of_isPushout
CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.inf
CategoryTheory.Abelian.epi_kernel_map_of_isPushout
CategoryTheory.MorphismProperty.IsStableUnderRetracts
CategoryTheory.Arrow.w_mk_right
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsRegularEpi
CategoryTheory.instIsRegularEpiOfIsSplitEpi
CategoryTheory.Retract.instIsSplitEpiR
CategoryTheory.MorphismProperty.instIsStableUnderRetractsMin
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Retract.instIsSplitMonoI
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
CategoryTheory.Functor.kernel
CategoryTheory.Functor.preservesZeroMorphisms_of_preserves_terminal_object
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.ShortComplex.Exact.mono_g
CategoryTheory.Limits.kernel.condition
CategoryTheory.ShortComplex.Exact.map
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.ShortComplex.Exact.epi_f
CategoryTheory.Limits.cokernel.condition
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.Limits.IsZero.eq_of_tgt
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.MorphismProperty.isomorphisms.infer_property
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Limits.HasZeroObject.instMono
CategoryTheory.Limits.hasCoequalizer_of_self
CategoryTheory.Iso.isZero_iff
CategoryTheory.Functor.map_isZero
CategoryTheory.Limits.isZero_zero
CategoryTheory.Limits.kernel
CategoryTheory.MorphismProperty.monomorphisms.infer_property
CategoryTheory.MorphismProperty.monomorphisms
CategoryTheory.Limits.isZero_kernel_of_mono
---
← Back to Index