Documentation Verification Report

Subobject

📁 Source: Mathlib/CategoryTheory/Abelian/Subobject.lean

Statistics

MetricCount
DefinitionssubobjectIsoSubobjectOp
1
TheoremssubobjectIsoSubobjectOp_apply, subobjectIsoSubobjectOp_symm_apply, wellPowered_opposite
3
Total4

CategoryTheory.Abelian

Definitions

NameCategoryTheorems
subobjectIsoSubobjectOp 📖CompOp
2 mathmath: subobjectIsoSubobjectOp_apply, subobjectIsoSubobjectOp_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
subobjectIsoSubobjectOp_apply 📖mathematicalDFunLike.coe
RelIso
CategoryTheory.Subobject
OrderDual
Opposite
CategoryTheory.Category.opposite
Opposite.op
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
OrderDual.instLE
RelIso.instFunLike
subobjectIsoSubobjectOp
CategoryTheory.Subobject.lift
CategoryTheory.Limits.cokernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
CategoryTheory.Limits.HasCokernels.has_colimit
has_cokernels
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.cokernel.π
subobjectIsoSubobjectOp_symm_apply 📖mathematicalDFunLike.coe
RelIso
OrderDual
CategoryTheory.Subobject
Opposite
CategoryTheory.Category.opposite
Opposite.op
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
RelIso.instFunLike
RelIso.symm
subobjectIsoSubobjectOp
CategoryTheory.Subobject.lift
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
toPreadditive
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
has_kernels
CategoryTheory.Limits.kernel.ι
wellPowered_opposite 📖mathematicalCategoryTheory.WellPowered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instLocallySmallOpposite
CategoryTheory.instLocallySmallOpposite
small_congr
CategoryTheory.small_subobject

---

← Back to Index