Documentation Verification Report

Yoneda

📁 Source: Mathlib/CategoryTheory/Abelian/Yoneda.lean

Statistics

MetricCount
Definitions0
Theoremsfull_comp_preadditiveCoyonedaObj, preadditiveCoyonedaObj_map_surjective
2
Total2

CategoryTheory.Abelian

Theorems

NameKindAssumesProvesValidatesDepends On
full_comp_preadditiveCoyonedaObj 📖mathematicalCategoryTheory.IsSeparator
CategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Functor.Full
ModuleCat
MulOpposite
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOpposite.instRing
CategoryTheory.Preadditive.instRingEnd
toPreadditive
ModuleCat.moduleCategory
CategoryTheory.Functor.comp
CategoryTheory.preadditiveCoyonedaObj
preadditiveCoyonedaObj_map_surjective
CategoryTheory.Functor.map_surjective
preadditiveCoyonedaObj_map_surjective 📖mathematicalCategoryTheory.IsSeparatorQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ModuleCat
MulOpposite
CategoryTheory.End
MulOpposite.instRing
CategoryTheory.Preadditive.instRingEnd
toPreadditive
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
CategoryTheory.preadditiveCoyonedaObj
CategoryTheory.Functor.map
CategoryTheory.additive_coyonedaObj
CategoryTheory.Functor.coe_mapAddHom
AddCommGrpCat.hom_ofHom
AddCommGrpCat.epi_iff_surjective
CategoryTheory.Limits.HasKernels.has_limit
has_kernels
CategoryTheory.Limits.kernel.condition
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.op_mono_of_epi
CategoryTheory.isSeparator_iff_faithful_preadditiveCoyonedaObj
CategoryTheory.ShortComplex.epi_of_mono_of_epi_of_mono
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.additive_yonedaObj'
CategoryTheory.Functor.preservesZeroMorphisms_comp
CategoryTheory.Functor.op_additive
CategoryTheory.ShortComplex.Exact.map_of_mono_of_preservesKernel
CategoryTheory.balanced_opposite
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.ShortComplex.Exact.op
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.preservesLimits_preadditiveYoneda_obj
CategoryTheory.Functor.map_mono
CategoryTheory.Functor.preservesMonomorphisms_comp
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.preservesFiniteLimits_op
CategoryTheory.preservesFiniteColimits_preadditiveCoyonedaObj_of_projective
ModuleCat.hom_ext
CategoryTheory.Preadditive.add_comp
LinearMap.ext_ring_op
CategoryTheory.Category.id_comp

---

← Back to Index