Documentation Verification Report

Action

📁 Source: Mathlib/CategoryTheory/Action.lean

Statistics

MetricCount
DefinitionsActionCategory, back, cases', curry, endMulEquivSubgroup, homOfPair, instCoeTC, instGroupoid, instInhabited, objEquiv, stabilizerIsoEnd, uncurry, π, actionAsFunctor, instCategoryActionCategory
15
Theoremsback_coe, coe_back, comp_val, curry_apply_left, curry_apply_right, val, hom_as_subtype, id_val, instIsConnectedOfIsPretransitiveOfNonempty, instNonempty, stabilizerIsoEnd_apply, stabilizerIsoEnd_symm_apply, uncurry_map, uncurry_obj, π_map, π_obj, actionAsFunctor_map, actionAsFunctor_obj
18
Total33

CategoryTheory

Definitions

NameCategoryTheorems
ActionCategory 📖CompOp
12 mathmath: ActionCategory.uncurry_map, ActionCategory.instNonempty, ActionCategory.π_obj, ActionCategory.curry_apply_left, ActionCategory.comp_val, ActionCategory.uncurry_obj, ActionCategory.id_val, ActionCategory.stabilizerIsoEnd_apply, ActionCategory.π_map, ActionCategory.instIsConnectedOfIsPretransitiveOfNonempty, ActionCategory.hom_as_subtype, ActionCategory.stabilizerIsoEnd_symm_apply
actionAsFunctor 📖CompOp
12 mathmath: actionAsFunctor_map, ActionCategory.uncurry_map, ActionCategory.coe_back, ActionCategory.back_coe, ActionCategory.curry_apply_left, actionAsFunctor_obj, ActionCategory.comp_val, ActionCategory.id_val, ActionCategory.stabilizerIsoEnd_apply, ActionCategory.homOfPair.val, ActionCategory.π_map, ActionCategory.stabilizerIsoEnd_symm_apply
instCategoryActionCategory 📖CompOp
11 mathmath: ActionCategory.uncurry_map, ActionCategory.π_obj, ActionCategory.curry_apply_left, ActionCategory.comp_val, ActionCategory.uncurry_obj, ActionCategory.id_val, ActionCategory.stabilizerIsoEnd_apply, ActionCategory.π_map, ActionCategory.instIsConnectedOfIsPretransitiveOfNonempty, ActionCategory.hom_as_subtype, ActionCategory.stabilizerIsoEnd_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
actionAsFunctor_map 📖mathematicalFunctor.map
SingleObj
SingleObj.category
types
actionAsFunctor
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
actionAsFunctor_obj 📖mathematicalFunctor.obj
SingleObj
SingleObj.category
types
actionAsFunctor

CategoryTheory.ActionCategory

Definitions

NameCategoryTheorems
back 📖CompOp
4 mathmath: uncurry_map, coe_back, back_coe, hom_as_subtype
cases' 📖CompOp
curry 📖CompOp
2 mathmath: curry_apply_left, curry_apply_right
endMulEquivSubgroup 📖CompOp
homOfPair 📖CompOp
2 mathmath: curry_apply_left, homOfPair.val
instCoeTC 📖CompOp
instGroupoid 📖CompOp
instInhabited 📖CompOp
objEquiv 📖CompOp
stabilizerIsoEnd 📖CompOp
2 mathmath: stabilizerIsoEnd_apply, stabilizerIsoEnd_symm_apply
uncurry 📖CompOp
2 mathmath: uncurry_map, uncurry_obj
π 📖CompOp
2 mathmath: π_obj, π_map

Theorems

NameKindAssumesProvesValidatesDepends On
back_coe 📖mathematicalCategoryTheory.SingleObj
CategoryTheory.Functor.obj
CategoryTheory.SingleObj.category
CategoryTheory.types
CategoryTheory.actionAsFunctor
back
coe_back 📖mathematicalback
CategoryTheory.SingleObj
CategoryTheory.Functor.obj
CategoryTheory.SingleObj.category
CategoryTheory.types
CategoryTheory.actionAsFunctor
comp_val 📖mathematicalQuiver.Hom
CategoryTheory.SingleObj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SingleObj.category
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.actionAsFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
curry_apply_left 📖mathematicalSemidirectProduct.left
Pi.group
mulAutArrow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
SemidirectProduct.instGroup
MonoidHom.instFunLike
curry
CategoryTheory.Functor.map
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.actionAsFunctor
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
homOfPair
curry_apply_right 📖mathematicalSemidirectProduct.right
Pi.group
mulAutArrow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
SemidirectProduct.instGroup
MonoidHom.instFunLike
curry
hom_as_subtype 📖mathematicalQuiver.Hom
CategoryTheory.ActionCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryActionCategory
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
back
id_val 📖mathematicalQuiver.Hom
CategoryTheory.SingleObj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SingleObj.category
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.actionAsFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instIsConnectedOfIsPretransitiveOfNonempty 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
CategoryTheory.zigzag_isConnected
instNonempty
Relation.ReflTransGen.single
nonempty_subtype
MulAction.exists_smul_eq
instNonempty 📖mathematicalCategoryTheory.ActionCategoryNonempty.map
stabilizerIsoEnd_apply 📖mathematicalDFunLike.coe
MulEquiv
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
MulAction.stabilizerSubmonoid
CategoryTheory.End
CategoryTheory.ActionCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.Functor.obj
CategoryTheory.SingleObj.category
CategoryTheory.types
CategoryTheory.actionAsFunctor
Submonoid.mul
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
stabilizerIsoEnd
stabilizerIsoEnd_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
CategoryTheory.End
CategoryTheory.ActionCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.Functor.obj
CategoryTheory.SingleObj.category
CategoryTheory.types
CategoryTheory.actionAsFunctor
Submonoid
Monoid.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
MulAction.stabilizerSubmonoid
CategoryTheory.End.mul
Submonoid.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
stabilizerIsoEnd
uncurry_map 📖mathematicalSemidirectProduct.right
Pi.group
mulAutArrow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
SemidirectProduct.instGroup
MonoidHom.instFunLike
CategoryTheory.Functor.map
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
uncurry
SemidirectProduct.left
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.actionAsFunctor
back
uncurry_obj 📖mathematicalSemidirectProduct.right
Pi.group
mulAutArrow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
SemidirectProduct
MulOneClass.toMulOne
Monoid.toMulOneClass
SemidirectProduct.instGroup
MonoidHom.instFunLike
CategoryTheory.Functor.obj
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
uncurry
π_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.actionAsFunctor
π_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ActionCategory
CategoryTheory.instCategoryActionCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
π
CategoryTheory.SingleObj.star

CategoryTheory.ActionCategory.homOfPair

Theorems

NameKindAssumesProvesValidatesDepends On
val 📖mathematicalQuiver.Hom
CategoryTheory.SingleObj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.actionAsFunctor
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.Functor.map
CategoryTheory.ActionCategory.homOfPair

---

← Back to Index