Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Action/Basic.lean

Statistics

MetricCount
DefinitionscounitIso, functor, inverse, unitIso, comp, hom, id, instInhabited, HomSubtype, V, actionPUnitEquivalence, actionPunitEquivalence, forget, functorCategoryEquivalence, functorCategoryEquivalenceCompEvaluation, hasForgetToV, inhabited', instCategory, instConcreteCategoryHomSubtypeV, instFunLikeHomSubtypeV, instInhabitedAddCommGrpCat, mkIso, res, resComp, resCongr, resEquiv, resId, trivial, ρ, ρAut, mapAction, mapAction, mapAction, mapActionComp, mapActionCongr
35
TheoremscounitIso_hom_app_app, counitIso_inv_app_app, functor_map_app, functor_obj_map, functor_obj_obj, inverse_map_hom, inverse_obj_V, inverse_obj_ρ_apply, unitIso_hom_app_hom, unitIso_inv_app_hom, comm, comm_assoc, comp_hom, ext, ext_iff, id_hom, conj_ρ, comp_hom, comp_hom_assoc, forget_map, forget_obj, full_res, functorCategoryEquivalence_counitIso, functorCategoryEquivalence_functor, functorCategoryEquivalence_inverse, functorCategoryEquivalence_unitIso, hom_ext, hom_ext_iff, hom_injective, hom_inv_hom, hom_inv_hom_assoc, id_hom, instFaithfulForget, instFaithfulRes, instIsEquivalenceFunctorSingleObjFunctor, instIsEquivalenceFunctorSingleObjInverse, instIsIsoHomHom, instIsIsoHomInv, inv_hom_hom, inv_hom_hom_assoc, isIso_hom_mk, isIso_of_hom_isIso, mkIso_hom_hom, mkIso_inv_hom, preservesColimits_forget, preservesLimits_forget, resComp_hom_app_hom, resComp_inv_app_hom, resCongr_hom, resCongr_inv, resEquiv_functor, resEquiv_inverse, resId_hom_app_hom, resId_inv_app_hom, res_map_hom, res_obj_V, res_obj_ρ, trivial_V, trivial_ρ, ρAut_apply_hom, ρAut_apply_inv, ρ_one, mapAction_functor, mapAction_inverse, instFaithfulActionMapAction, instFullActionMapActionOfFaithful, mapActionComp_hom, mapActionComp_inv, mapActionCongr_hom, mapActionCongr_inv, mapAction_map_hom, mapAction_obj_V, mapAction_obj_ρ_apply
73
Total108

Action

Definitions

NameCategoryTheorems
HomSubtype 📖CompOp
20 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, Rep.norm_comm_apply, forget₂_preservesZeroMorphisms, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.εToSingle₀_comp_eq, Rep.applyAsHom_comm_apply, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, FDRep.forget₂_ρ, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, isContinuous_def, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, forget₂_linear, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, forget₂_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
V 📖CompOp
651 mathmath: resCongr_inv, Rep.resCoindHomEquiv_symm_apply_hom, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2π, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, groupHomology.π_comp_H2Iso_hom_assoc, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.coe_linearization_obj_ρ, groupHomology.mapCycles₂_comp_assoc, groupCohomology.toCocycles_comp_isoCocycles₁_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, leftRegularTensorIso_inv_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, neg_hom, groupCohomology.mem_cocycles₂_def, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, groupCohomology.d₂₃_hom_apply, inv_hom_hom_assoc, groupHomology.d₁₀_single_one, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, groupHomology.boundaries₂_le_cycles₂, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, sum_hom, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_assoc, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.d₀₁_comp_d₁₂, Representation.repOfTprodIso_apply, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, ContinuousCohomology.I_obj_V_carrier, groupCohomology.cocyclesIso₀_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.d₃₂_single, ofMulAction_apply, groupCohomology.eq_d₀₁_comp_inv, groupCohomology.H1π_comp_map_assoc, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.π_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_ρ, groupHomology.H0IsoOfIsTrivial_inv_eq_π, groupCohomology.π_comp_H1Iso_hom_assoc, CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected, groupCohomology.eq_d₁₂_comp_inv, Rep.indToCoindAux_self, groupCohomology.mapCocycles₂_comp_i, groupHomology.eq_d₃₂_comp_inv, diagonalSuccIsoTensorDiagonal_inv_hom, Rep.coe_res_obj_ρ, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.Functor.mapAction_δ_hom, Rep.diagonalHomEquiv_symm_apply, tensorObj_V, groupCohomology.H0IsoOfIsTrivial_hom, TannakaDuality.FiniteGroup.forget_obj, Hom.comp_hom, groupCohomology.coe_mapCocycles₁, groupHomology.mem_cycles₂_iff, groupHomology.cyclesMap_comp_isoCycles₂_hom, groupCohomology.d₁₂_hom_apply, groupHomology.comp_d₂₁_eq, groupCohomology.coboundariesToCocycles₁_apply, groupHomology.mapCycles₁_comp_assoc, leftUnitor_inv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, comp_hom, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, groupHomology.H0π_comp_map, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, rightDual_ρ, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.comp_d₁₂_eq, groupCohomology.mem_cocycles₁_of_addMonoidHom, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, Rep.linearization_single, groupHomology.d₃₂_single_one_thd, whiskerRight_hom, groupHomology.isoCycles₁_inv_comp_iCycles_apply, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_d₂₃_comp_inv_assoc, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_d₂₃_comp_inv_apply, CategoryTheory.Functor.mapContActionCongr_inv, groupCohomology.eq_d₁₂_comp_inv_apply, groupHomology.chains₁ToCoinvariantsKer_surjective, FunctorCategoryEquivalence.functor_obj_obj, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, groupHomology.cycles₁_eq_top_of_isTrivial, groupHomology.π_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.d₃₂_comp_d₂₁_assoc, groupCohomology.mem_cocycles₁_def, Rep.instEpiModuleCatHom, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundaries₂, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, Rep.norm_comm_apply, forget₂_preservesZeroMorphisms, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, smul_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, groupCohomology.coboundaries₁_eq_bot_of_isTrivial, groupHomology.d₂₁_single_inv_mul_ρ_add_single, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, groupCohomology.cocycles₂_map_one_fst, Rep.indCoindIso_inv_hom_hom, groupCohomology.mapCocycles₂_comp_i_assoc, groupHomology.d₁₀_comp_coinvariantsMk_apply, Rep.ρ_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃, groupHomology.mapCycles₁_id_comp_assoc, groupHomology.eq_d₂₁_comp_inv, CategoryTheory.Functor.mapContActionCongr_hom, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, groupCohomology.H2π_comp_map_apply, groupHomology.mapCycles₁_comp, FunctorCategoryEquivalence.unitIso_inv_app_hom, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, FunctorCategoryEquivalence.functor_map_app, groupCohomology.dArrowIso₀₁_hom_right, Rep.MonoidalClosed.linearHomEquivComm_hom, groupCohomology.toCocycles_comp_isoCocycles₂_hom, Rep.coe_linearization_obj, ContinuousCohomology.I_obj_ρ_apply, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, groupHomology.mapCycles₁_comp_i, groupCohomology.shortComplexH0_f, groupCohomology.cocyclesOfIsCocycle₁_coe, groupCohomology.coboundaries₂_le_cocycles₂, Rep.standardComplex.εToSingle₀_comp_eq, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, Rep.indCoindIso_hom_hom_hom, groupCohomology.comp_d₂₃_eq, groupCohomology.coboundaries₂.val_eq_coe, hom_inv_hom, Rep.ofModuleMonoidAlgebra_obj_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundaries₂, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, groupCohomology.infNatTrans_app, groupCohomology.d₁₂_apply_mem_cocycles₂, Rep.invariantsAdjunction_unit_app, groupHomology.mapCycles₂_id_comp, groupCohomology.d₀₁_apply_mem_cocycles₁, Rep.indToCoindAux_fst_mul_inv, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, groupCohomology.π_comp_H0IsoOfIsTrivial_hom, groupCohomology.subtype_comp_d₀₁_apply, ContinuousCohomology.Iobj_ρ_apply, groupCohomology.H2π_eq_iff, groupCohomology.comp_d₀₁_eq, mkIso_hom_hom, groupCohomology.cocycles₂_map_one_snd, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCycles₁_hom_apply, TannakaDuality.FiniteGroup.sumSMulInv_apply, groupHomology.mapCycles₂_comp_i, groupCohomology.map_H0Iso_hom_f, groupHomology.boundariesOfIsBoundary₁_coe, resId_inv_app_hom, FDRep.instFiniteDimensionalCarrierVFGModuleCat, Rep.indToCoindAux_comm, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, groupHomology.cyclesIso₀_comp_H0π_apply, groupHomology.eq_d₃₂_comp_inv_apply, FDRep.average_char_eq_finrank_invariants, groupCohomology.cocycles₂_ρ_map_inv_sub_map_inv, Rep.toAdditive_symm_apply, groupHomology.single_one_fst_sub_single_one_fst_mem_boundaries₂, instIsIsoHomInv, groupHomology.mapCycles₁_id_comp_apply, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_assoc, Rep.ofMulDistribMulAction_ρ_apply_apply, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, groupCohomology.instEpiModuleCatH1π, groupCohomology.H2π_comp_map, groupHomology.π_comp_H2Iso_hom, Rep.indResAdjunction_counit_app_hom_hom, FDRep.hom_hom_action_ρ, CategoryTheory.Functor.mapAction_obj_ρ_apply, FintypeCat.toEndHom_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, groupHomology.mapCycles₁_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.mapCycles₂_comp, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.coe_of, groupCohomology.isoCocycles₂_hom_comp_i, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, hom_injective, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, nsmul_hom, groupHomology.comp_d₁₀_eq, groupHomology.H1π_comp_map_apply, groupHomology.H0π_comp_map_assoc, groupCohomology.dArrowIso₀₁_hom_left, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupHomology.π_comp_H0Iso_hom_apply, groupCohomology.eq_d₀₁_comp_inv_apply, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.cocycles₁_map_inv, Rep.freeLiftLEquiv_apply, groupCohomology.mapCocycles₁_one, groupHomology.H2π_comp_map_assoc, Rep.indToCoindAux_mul_fst, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, id_hom, Rep.ihom_obj_ρ_apply, sub_hom, groupHomology.d₁₀ArrowIso_inv_right, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.π_comp_H0Iso_hom_assoc, CategoryTheory.Functor.mapAction_obj_V, groupCohomology.mem_cocycles₂_iff, Rep.tensor_ρ, Rep.toAdditive_apply, groupCohomology.H2π_comp_map_assoc, groupHomology.d₁₀_comp_coinvariantsMk, groupHomology.d₂₁_comp_d₁₀_apply, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.ofDistribMulAction_ρ_apply_apply, groupCohomology.d₀₁_ker_eq_invariants, Rep.linearization_η_hom_apply, res_obj_V, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, FDRep.char_linHom, forget_obj, groupHomology.H2π_eq_iff, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocycles₁_iff, groupHomology.range_d₁₀_eq_coinvariantsKer, groupCohomology.inhomogeneousCochains.d_comp_d, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, rightDual_v, Rep.coinvariantsShortComplex_f, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, Hom.id_hom, groupCohomology.isoCocycles₁_inv_comp_iCocycles, groupHomology.π_comp_H0IsoOfIsTrivial_hom, leftRegularTensorIso_hom_hom, groupHomology.eq_d₂₁_comp_inv_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.cyclesMap_comp_isoCycles₂_hom_assoc, ContinuousCohomology.I_map_hom, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundary₁_coe, groupHomology.cyclesIso₀_inv_comp_iCycles, CategoryTheory.Functor.mapAction_μ_hom, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, FintypeCat.quotientToEndHom_mk, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupHomology.mapCycles₂_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, zero_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocycles₁_map_mul_of_isTrivial, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, groupHomology.toCycles_comp_isoCycles₂_hom, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, groupHomology.mapCycles₁_id_comp, Rep.trivialFunctor_obj_V, Rep.indToCoindAux_mul_snd, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, groupCohomology.cocyclesOfIsMulCocycle₂_coe, groupHomology.eq_d₁₀_comp_inv, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, groupHomology.isoShortComplexH1_inv, res_map_hom, groupCohomology.coboundariesOfIsMulCoboundary₁_coe, groupHomology.eq_d₁₀_comp_inv_assoc, groupCohomology.d₁₂_comp_d₂₃, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_ρ, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, groupHomology.isoCycles₁_hom_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, instIsIsoHomHom, groupCohomology.H1π_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, groupHomology.cyclesMap_comp_cyclesIso₀_hom, groupCohomology.cochainsMap_f, groupCohomology.coboundaries₁.val_eq_coe, groupHomology.d₃₂_single_one_fst, inhomogeneousCochains.d_hom_apply, Rep.coind'_ext_iff, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, groupHomology.d₂₁_comp_d₁₀, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, groupHomology.single_ρ_self_add_single_inv_mem_boundaries₁, groupHomology.H1ToTensorOfIsTrivial_H1π_single, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, ρ_self_inv_apply, Rep.linearizationTrivialIso_inv_hom, groupHomology.cyclesOfIsCycle₁_coe, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, Rep.quotientToInvariantsFunctor_obj_V, FDRep.char_one, groupHomology.inhomogeneousChains.ext_iff, ρ_one, groupHomology.d₂₁_apply_mem_cycles₁, groupCohomology.coboundariesToCocycles₂_apply, add_hom, ρAut_apply_hom, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.cocyclesOfIsMulCocycle₁_coe, groupCohomology.H2π_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i_assoc, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, groupCohomology.cocycles₁.val_eq_coe, TannakaDuality.FiniteGroup.sumSMulInv_single_id, groupCohomology.H1π_comp_map_apply, Rep.leftRegularHom_hom_single, groupCohomology.cocycles₁_map_one, groupHomology.eq_d₃₂_comp_inv_assoc, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, CategoryTheory.Functor.mapActionCongr_inv, groupCohomology.π_comp_H2Iso_hom_assoc, Hom.comm_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, Rep.coindVEquiv_apply_hom, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_assoc, FunctorCategoryEquivalence.inverse_obj_V, groupHomology.H1π_eq_zero_iff, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.d₂₁_single_one_fst, resComp_inv_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.H2π_comp_map, groupCohomology.cocycles₂.val_eq_coe, groupHomology.cyclesIso₀_inv_comp_cyclesMap_assoc, groupCohomology.eq_d₂₃_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, FunctorCategoryEquivalence.unitIso_hom_app_hom, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, groupHomology.H1π_comp_map_assoc, hom_inv_hom_assoc, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1π, tensorHom_hom, inv_hom_hom, groupHomology.H1AddEquivOfIsTrivial_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, associator_hom_hom, res_obj_ρ, groupHomology.single_one_snd_sub_single_one_snd_mem_boundaries₂, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2π, CategoryTheory.Functor.mapActionCongr_hom, groupCohomology.cocyclesMk₂_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupHomology.H1π_comp_map, groupHomology.chainsMap_f_hom, groupHomology.d₃₂_apply_mem_cycles₂, mkIso_inv_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_ρ, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.boundariesOfIsBoundary₂_coe, FintypeCat.quotientToQuotientOfLE_hom_mk, groupHomology.cyclesMk₁_eq, groupHomology.cyclesIso₀_comp_H0π_assoc, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, Rep.Action_ρ_eq_ρ, Rep.linearization_δ_hom, groupHomology.instEpiModuleCatH0π, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, whiskerLeft_hom, groupCohomology.mapCocycles₁_comp_i_apply, Rep.coindMap_hom, groupHomology.mapCycles₂_id_comp_apply, zsmul_hom, Rep.trivial_def, groupCohomology.cocycles₂_ext_iff, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, Rep.invariantsAdjunction_homEquiv_apply_hom, Rep.hom_comm_apply, groupHomology.H2π_comp_map_apply, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, groupCohomology.coboundaries₁_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, groupHomology.π_comp_H0Iso_hom, groupCohomology.π_comp_H2Iso_hom_apply, Rep.coinvariantsTensorMk_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap, Rep.indMap_hom, tensorUnit_V, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.H0π_comp_H0Iso_hom, groupHomology.isoCycles₁_hom_comp_i_assoc, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, FDRep.forget₂_ρ, Rep.invariantsFunctor_map_hom, groupHomology.d₁₀_eq_zero_of_isTrivial, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.d₀₁_comp_d₁₂_assoc, tensor_ρ, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.d₂₁_single_one_snd, groupHomology.π_comp_H0IsoOfIsTrivial_hom_assoc, FDRep.instFiniteCarrierVFGModuleCat, groupHomology.d₃₂_comp_d₂₁, groupHomology.d₃₂_single_one_snd, groupHomology.π_comp_H2Iso_hom_apply, FDRep.Iso.conj_ρ, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, groupHomology.mapCycles₁_hom, β_inv_hom, Rep.leftRegularHomEquiv_apply, groupHomology.isoCycles₁_inv_comp_iCycles, diagonalSuccIsoTensorDiagonal_hom_hom, FDRep.char_dual, resId_hom_app_hom, groupHomology.cyclesMap_comp_isoCycles₁_hom_assoc, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCycles₁, rightUnitor_hom_hom, groupHomology.toCycles_comp_isoCycles₁_hom, groupCohomology.d₀₁_comp_d₁₂_apply, leftDual_v, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCycles₂_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_apply, groupHomology.boundariesToCycles₂_apply, groupCohomology.subtype_comp_d₀₁, groupHomology.cyclesOfIsCycle₂_coe, Rep.freeLift_hom, groupHomology.isoCycles₂_hom_comp_i, isContinuous_def, groupHomology.π_comp_H1Iso_hom, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.Functor.mapAction_map_hom, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, Rep.indToCoindAux_snd_mul_inv, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, Rep.res_obj_ρ, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, associator_inv_hom, groupCohomology.coboundaries₁_le_cocycles₁, Rep.ihom_obj_V_isModule, groupHomology.d₁₀ArrowIso_hom_right, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundaries₁, leftDual_ρ, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupHomology.cyclesIso₀_comp_H0π, groupCohomology.isoCocycles₂_hom_comp_i_apply, Rep.diagonalHomEquiv_apply, groupHomology.d₂₁_single, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, Rep.epi_iff_surjective, groupCohomology.coboundaries₂_ext_iff, groupHomology.d₁₀_comp_coinvariantsMk_assoc, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycle₂_coe, groupHomology.cyclesMk₀_eq, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupHomology.H0π_comp_H0Iso_hom_assoc, groupCohomology.H1π_comp_map, Iso.conj_ρ, groupHomology.single_inv_ρ_self_add_single_mem_boundaries₁, rightUnitor_inv_hom, Rep.indResHomEquiv_apply_hom, groupHomology.cyclesMap_comp_cyclesIso₀_hom_assoc, groupCohomology.cocyclesMk₀_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, Rep.linearizationTrivialIso_hom_hom, groupHomology.single_mem_cycles₂_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundaries₁_le_cycles₁, groupHomology.cyclesIso₀_inv_comp_iCycles_assoc, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.ihom_obj_ρ, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, Rep.free_ext_iff, resComp_hom_app_hom, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupCohomology.cocycles₁_ext_iff, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, TannakaDuality.FiniteGroup.ofRightFDRep_hom, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, groupCohomology.eq_d₁₂_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, forget₂_linear, FunctorCategoryEquivalence.functor_obj_map, groupHomology.d₁₀ArrowIso_inv_left, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cycles₁_iff, Rep.coinvariantsFunctor_map_hom, ρAut_apply_inv, groupHomology.d₂₁_single_ρ_add_single_inv_mul, Hom.comm, ρ_inv_self_apply, Rep.linearization_map_hom_single, comp_hom_assoc, groupCohomology.isoShortComplexH2_inv, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupHomology.eq_d₁₀_comp_inv_apply, Rep.ihom_obj_V_carrier, ContinuousCohomology.const_app_hom, ofMulAction_V, Rep.coindIso_hom_hom_hom, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.barComplex.d_single, FDRep.hom_action_ρ, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, Rep.instMonoModuleCatHom, groupHomology.d₂₁_comp_d₁₀_assoc, groupCohomology.coe_mapCocycles₂, groupCohomology.eq_d₀₁_comp_inv_assoc, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, groupCohomology.isoCocycles₁_hom_comp_i_assoc, resCongr_hom, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.mapCycles₁_comp_i_assoc, groupHomology.H0π_comp_map_apply, trivial_V, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundary₂_coe, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, FDRep.endRingEquiv_comp_ρ, Rep.linearization_map_hom, β_hom_hom, groupHomology.mem_cycles₁_iff, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i, groupHomology.boundariesToCycles₁_apply, groupHomology.single_mem_cycles₂_iff_inv, groupHomology.d₁₀_single, leftUnitor_hom_hom, groupCohomology.cocycles₁.d₁₂_apply, Rep.indResHomEquiv_symm_apply_hom, forget₂_additive, groupHomology.isoCycles₂_hom_comp_i_assoc, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀, groupHomology.H2π_eq_zero_iff, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, Rep.linearization_μ_hom, FintypeCat.ofMulAction_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1π_eq_iff, groupHomology.d₃₂_comp_d₂₁_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom, groupCohomology.d₀₁_eq_zero, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
actionPUnitEquivalence 📖CompOp—
actionPunitEquivalence 📖CompOp—
forget 📖CompOp
44 mathmath: forget_η, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget, instReflectsLimitsOfShapeForget, groupHomology.π_comp_H0Iso_hom_assoc, forget_preservesZeroMorphisms, instPreservesColimitForgetOfHasColimitComp, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, preservesColimits_forget, groupHomology.coinvariantsMk_comp_H0Iso_inv, instPreservesFiniteLimitsForgetOfHasFiniteLimits, Rep.coinvariantsFunctor_hom_ext_iff, instFaithfulForget, Rep.instEpiModuleCatAppActionCoinvariantsMk, forget_δ, preservesLimits_forget, groupHomology.d₁₀_comp_coinvariantsMk, instPreservesLimitForgetOfHasLimitComp, forget_obj, forget_additive, instPreservesFiniteColimitsForgetOfHasFiniteColimits, instReflectsColimitsForget, instReflectsColimitsOfShapeForget, instPreservesLimitsOfShapeForgetOfHasLimitsOfShape, Rep.coinvariantsMk_app_hom, forget_ε, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, instReflectsLimitsForget, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, groupHomology.π_comp_H0Iso_hom, groupHomology.H0π_comp_H0Iso_hom, forget_linear, forget_μ, groupHomology.shortComplexH0_g, Rep.coinvariantsAdjunction_unit_app_hom, instReflectsLimitForget, groupHomology.d₁₀_comp_coinvariantsMk_assoc, groupHomology.H0π_comp_H0Iso_hom_assoc, Iso.conj_ρ, instPreservesColimitsOfShapeForgetOfHasColimitsOfShape, Rep.coinvariantsAdjunction_homEquiv_apply_hom, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, instReflectsColimitForget, forget_map
functorCategoryEquivalence 📖CompOp
25 mathmath: Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, functorCategoryEquivalence_inverse, functorCategoryEquivalence_unitIso, leftUnitor_inv_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, whiskerRight_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, Rep.homEquiv_apply_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, functorCategoryEquivalence_functor, diagonalSuccIsoTensorTrivial_inv_hom_apply, functorCategoryEquivalence_counitIso, tensorHom_hom, associator_hom_hom, whiskerLeft_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.homEquiv_symm_apply_hom, Rep.ihom_coev_app_hom, rightUnitor_hom_hom, associator_inv_hom, functorCategoryEquivalence_linear, functorCategoryEquivalence_preservesZeroMorphisms, rightUnitor_inv_hom, functorCategoryEquivalence_additive, leftUnitor_hom_hom
functorCategoryEquivalenceCompEvaluation 📖CompOp—
hasForgetToV 📖CompOp
10 mathmath: forget₂_preservesZeroMorphisms, Rep.standardComplex.εToSingle₀_comp_eq, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, forget₂_linear, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, forget₂_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
inhabited' 📖CompOp—
instCategory 📖CompOp
582 mathmath: resCongr_inv, forget_η, Rep.resCoindHomEquiv_symm_apply_hom, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.coe_linearization_obj_ρ, groupHomology.mapCycles₂_comp_assoc, instIsEquivalenceFunctorSingleObjInverse, Rep.MonoidalClosed.linearHomEquiv_symm_hom, leftRegularTensorIso_inv_hom, neg_hom, groupHomology.map₁_quotientGroupMk'_epi, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, groupHomology.mapShortComplexH2_id, inv_hom_hom_assoc, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, sum_hom, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.cocyclesMap_id_comp_assoc, Representation.repOfTprodIso_apply, Rep.coindResAdjunction_counit_app, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, ContinuousCohomology.I_obj_V_carrier, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.mapCycles₁_comp_apply, groupHomology.mapShortComplexH1_zero, groupHomology.cyclesMap_id_comp, Rep.indFunctor_obj, groupHomology.mapShortComplexH2_zero, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget, Rep.indCoindNatIso_hom_app, groupHomology.chainsMap_id, diagonalSuccIsoTensorDiagonal_inv_hom, Rep.coe_res_obj_ρ, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Rep.barComplex.d_def, CategoryTheory.Functor.mapAction_δ_hom, Functor.mapActionPreservesLimitsOfShapeOfPreserves, Rep.diagonalHomEquiv_symm_apply, tensorObj_V, Rep.coindFunctor_map, functorCategoryEquivalence_inverse, instHasLimits, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, FunctorCategoryEquivalence.counitIso_inv_app_app, functorCategoryEquivalence_unitIso, Rep.instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, Rep.instIsRightAdjointCoindFunctor, groupHomology.mapCycles₁_comp_assoc, leftUnitor_inv_hom, comp_hom, Rep.instIsTrivialObjModuleCatTrivialFunctor, instHasFiniteProducts, groupHomology.H0π_comp_map, Rep.coinvariantsAdjunction_counit_app, rightDual_ρ, groupHomology.map_id, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, instHasFiniteCoproducts, groupCohomology.cochainsMap_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Rep.linearization_single, whiskerRight_hom, groupHomology.coresNatTrans_app, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.congr, CategoryTheory.Functor.mapActionComp_hom, FunctorCategoryEquivalence.functor_obj_obj, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.standardComplex.d_eq, instReflectsLimitsOfShapeForget, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, groupHomology.π_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, Rep.trivial_projective_of_subsingleton, groupHomology.H1CoresCoinfOfTrivial_X₁, Rep.homEquiv_apply_hom, groupCohomology.mapShortComplexH2_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, Functor.mapActionPreservesLimit_of_preserves, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, Rep.norm_comm_apply, forget₂_preservesZeroMorphisms, smul_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, Rep.indCoindIso_inv_hom_hom, Rep.free_projective, groupHomology.d₁₀_comp_coinvariantsMk_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, forget_preservesZeroMorphisms, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.mapCycles₁_id_comp_assoc, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, groupHomology.mapCycles₁_comp, groupHomology.map_comp, FunctorCategoryEquivalence.unitIso_inv_app_hom, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, CategoryTheory.Functor.mapActionComp_inv, FunctorCategoryEquivalence.functor_map_app, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.coe_linearization_obj, Rep.instIsRightAdjointModuleCatInvariantsFunctor, groupCohomology.map_comp, groupHomology.map_id_comp, ContinuousCohomology.I_obj_ρ_apply, Rep.coinvariantsTensorIndIso_inv, groupHomology.functor_obj, instPreservesColimitForgetOfHasColimitComp, FunctorCategoryEquivalence.functor_δ, Rep.standardComplex.εToSingle₀_comp_eq, ContAction.resEquiv_inverse, Rep.coindVEquiv_symm_apply_coe, Rep.homEquiv_def, Rep.indCoindIso_hom_hom_hom, hom_inv_hom, CategoryTheory.PreGaloisCategory.instFaithfulActionFintypeCatAutFunctorFunctorToAction, groupHomology.H1CoresCoinf_X₁, Rep.ofModuleMonoidAlgebra_obj_coe, CategoryTheory.FintypeCat.instMonoActionFintypeCatImageComplementIncl, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, groupCohomology.infNatTrans_app, ContinuousCohomology.instLinearActionTopModuleCatInvariants, Rep.invariantsAdjunction_unit_app, groupHomology.mapCycles₂_id_comp, Rep.diagonal_succ_projective, groupHomology.cyclesMap_comp_assoc, Rep.instIsLeftAdjointActionModuleCatRes, Functor.mapActionPreservesColimit_of_preserves, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, isIso_of_hom_isIso, groupHomology.chainsMap_f_single, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, mkIso_hom_hom, preservesColimits_forget, Rep.instProjective, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv, CategoryTheory.PreGaloisCategory.functorToContAction_map, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, Rep.barResolution_complex, CategoryTheory.Equivalence.mapAction_functor, resId_inv_app_hom, groupCohomology.cochainsMap_zero, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, ContinuousCohomology.I_obj_V_isModule, CategoryTheory.PreGaloisCategory.instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, Rep.coindResAdjunction_unit_app, instIsIsoHomInv, groupHomology.mapCycles₁_id_comp_apply, tensorUnit_ρ, groupCohomology.cochainsMap_id_comp, functorCategoryEquivalence_functor, groupCohomology.map_id, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, groupCohomology.mapShortComplexH2_comp, Functor.instPreservesFiniteLimitsMapActionOfHasFiniteLimits, CategoryTheory.PreGaloisCategory.exists_lift_of_continuous, CategoryTheory.Functor.mapAction_η_hom, groupCohomology.cochainsMap_comp_assoc, instPreservesFiniteLimitsForgetOfHasFiniteLimits, Rep.indResAdjunction_counit_app_hom_hom, CategoryTheory.Functor.mapAction_obj_ρ_apply, FintypeCat.toEndHom_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.mapCycles₁_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.mapCycles₂_comp, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.coinvariantsFunctor_hom_ext_iff, ContinuousCohomology.instAdditiveActionTopModuleCatInvariants, nsmul_hom, instFaithfulForget, classifyingSpaceUniversalCover_map, diagonalSuccIsoTensorTrivial_inv_hom_apply, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.coindMap'_hom, preservesLimitsOfShape_of_preserves, CategoryTheory.PreGaloisCategory.exists_lift_of_mono_of_isConnected, CategoryTheory.Functor.mapAction_linear, Rep.normNatTrans_app, groupHomology.H0π_comp_map_assoc, CategoryTheory.FintypeCat.instGaloisCategoryActionFintypeCat, instIsEquivalenceFunctorSingleObjFunctor, res_additive, groupHomology.π_comp_H0Iso_hom_apply, groupCohomology.H1InfRes_X₃, Rep.applyAsHom_comm_assoc, Rep.instEpiModuleCatAppActionCoinvariantsMk, Rep.freeLiftLEquiv_apply, groupHomology.chainsFunctor_obj, Rep.instEnoughProjectives, groupCohomology.functor_obj, groupCohomology.cocyclesMap_comp, forget_δ, ContinuousCohomology.MultiInd.d_comp_d_assoc, FunctorCategoryEquivalence.inverse_obj_ρ_apply, hasLimitsOfShape, ContAction.res_obj_obj, id_hom, Rep.ihom_obj_ρ_apply, sub_hom, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, hasColimitsOfShape, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.finsuppTensorRight_hom_hom, groupCohomology.resNatTrans_app, preservesLimits_forget, CategoryTheory.Functor.mapAction_ε_hom, CategoryTheory.Functor.mapAction_obj_V, groupCohomology.mapShortComplexH2_zero, Rep.tensor_ρ, Rep.resIndAdjunction_homEquiv_apply, groupHomology.d₁₀_comp_coinvariantsMk, instPreservesLimitForgetOfHasLimitComp, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_η_hom_apply, res_obj_V, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, Rep.leftRegularHomEquiv_symm_apply, forget_obj, Rep.quotientToCoinvariantsFunctor_map_hom, groupCohomology.mapShortComplexH1_id, Rep.coinvariantsShortComplex_g, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, Rep.Tor_map, Rep.ofModuleMonoidAlgebra_obj_ρ, rightDual_v, Rep.coinvariantsShortComplex_f, Rep.resIndAdjunction_counit_app, ContAction.resComp_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, CategoryTheory.Functor.mapAction_preadditive, leftRegularTensorIso_hom_hom, preservesColimitsOfSize_of_preserves, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, Rep.instIsLeftAdjointModuleCatCoinvariantsFunctor, ContinuousCohomology.I_map_hom, CategoryTheory.Functor.mapAction_μ_hom, Representation.coind'_apply_apply, Rep.diagonalOneIsoLeftRegular_inv_hom, FintypeCat.quotientToEndHom_mk, CategoryTheory.Functor.instFullActionMapActionOfFaithful, forget_additive, groupHomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCycles₂_id_comp_assoc, Rep.coindIso_inv_hom_hom, zero_hom, groupHomology.mapShortComplexH2_comp, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.mapCycles₁_id_comp, Rep.trivialFunctor_obj_V, Functor.instPreservesFiniteColimitsMapActionOfHasFiniteColimits, instPreservesFiniteColimitsForgetOfHasFiniteColimits, ContAction.resEquiv_functor, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, res_map_hom, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_ρ, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, instIsIsoHomHom, Rep.invariantsAdjunction_counit_app_hom, groupHomology.cyclesMap_comp_cyclesIso₀_hom, groupCohomology.cochainsMap_f, Rep.coind'_ext_iff, instReflectsColimitsForget, groupHomology.chainsMap_comp, CategoryTheory.PreGaloisCategory.functorToAction_map, Rep.instLinearModuleCatInvariantsFunctor, instReflectsColimitsOfShapeForget, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, groupCohomology.map_id_comp_assoc, Rep.linearizationTrivialIso_inv_hom, Rep.isZero_Tor_succ_of_projective, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, Rep.quotientToInvariantsFunctor_obj_V, instPreservesLimitsOfShapeForgetOfHasLimitsOfShape, add_hom, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.congr, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, Rep.applyAsHom_comm, instHasFiniteColimits, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, CategoryTheory.Functor.mapActionCongr_inv, groupCohomology.H1InfRes_g, Rep.standardComplex.d_comp_ε, Rep.finsuppTensorRight_inv_hom, CategoryTheory.PreGaloisCategory.instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, Rep.indCoindNatIso_inv_app, functorCategoryEquivalence_counitIso, groupCohomology.mapShortComplexH1_id_comp, groupCohomology.cocyclesMap_comp_assoc, forget_ε, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, FunctorCategoryEquivalence.inverse_obj_V, resComp_inv_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, Rep.trivialFunctor_map_hom, groupHomology.cyclesIso₀_inv_comp_cyclesMap_assoc, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, FunctorCategoryEquivalence.unitIso_hom_app_hom, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, groupHomology.mapShortComplexH1_id, groupCohomology.map_id_comp, hom_inv_hom_assoc, Rep.ihom_map_hom, tensorHom_hom, inv_hom_hom, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, associator_hom_hom, res_obj_ρ, CategoryTheory.PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Functor.preservesLimitsOfSize_of_preserves, Rep.unit_iso_comm, full_res, Rep.leftRegularHomEquiv_symm_single, instReflectsLimitsForget, inhomogeneousCochains.d_eq, CategoryTheory.PreGaloisCategory.has_decomp_quotients, Rep.FiniteCyclicGroup.resolution_complex, CategoryTheory.Functor.mapActionCongr_hom, groupHomology.chainsFunctor_map, Rep.leftRegularTensorTrivialIsoFree_inv_hom, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, groupHomology.chainsMap_f_hom, mkIso_inv_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.H1CoresCoinfOfTrivial_f, Rep.coindFunctor'_obj, FunctorCategoryEquivalence.inverse_map_hom, Rep.linearization_δ_hom, groupHomology.functor_map, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, whiskerLeft_hom, groupCohomology.mapCocycles₁_comp_i_apply, groupHomology.mapCycles₂_id_comp_apply, Rep.standardComplex.instQuasiIsoNatεToSingle₀, zsmul_hom, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, Rep.standardComplex.x_projective, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, CategoryTheory.PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, preservesLimitsOfSize_of_preserves, Rep.instPreservesEpimorphismsSubtypeMemSubgroupCoindFunctorSubtype, Rep.FiniteCyclicGroup.resolution_quasiIso, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, groupCohomology.H1Map_id, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, Rep.finsuppTensorLeft_hom_hom, Rep.indFunctor_map, groupHomology.H1CoresCoinfOfTrivial_g, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, FunctorCategoryEquivalence.counitIso_hom_app_app, groupHomology.π_comp_H0Iso_hom, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.mapShortComplexH1_zero, ContinuousCohomology.instLinearActionTopModuleCatI, groupCohomology.mapShortComplexH1_comp_assoc, Rep.coinvariantsTensorMk_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap, tensorUnit_V, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.H0π_comp_H0Iso_hom, Rep.coinvariantsShortComplex_X₁, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, instMonoidalPreadditive, FDRep.forget₂_ρ, Rep.invariantsFunctor_map_hom, groupHomology.map_id_comp_H0Iso_hom, FunctorCategoryEquivalence.functor_μ, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.cocyclesMap_id, Rep.instIsRightAdjointActionModuleCatRes, tensor_ρ, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, Rep.norm_comm_assoc, groupCohomology.mapShortComplexH2_id_comp, ContinuousCohomology.MultiInd.d_comp_d, Rep.resIndAdjunction_unit_app, resEquiv_inverse, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Functor.preservesColimitsOfSize_of_preserves, Rep.ihom_coev_app_hom, β_inv_hom, Rep.leftRegularHomEquiv_apply, Rep.leftRegular_projective, groupHomology.chainsMap_zero, forget_linear, CategoryTheory.PreGaloisCategory.exists_lift_of_mono, diagonalSuccIsoTensorDiagonal_hom_hom, resId_hom_app_hom, instHasColimits, groupHomology.mapShortComplexH2_id_comp, rightUnitor_hom_hom, forget_μ, diagonalSuccIsoTensorTrivial_hom_hom_apply, leftDual_v, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, groupHomology.mapCycles₂_comp_i_apply, isContinuous_def, CategoryTheory.Functor.mapAction_map_hom, Functor.mapActionPreservesColimitsOfShapeOfPreserves, groupCohomology.cocyclesMap_id_comp, Rep.res_obj_ρ, associator_inv_hom, resEquiv_functor, groupHomology.shortComplexH0_g, Rep.ihom_obj_V_isModule, groupCohomology.mapShortComplexH2_id, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftDual_ρ, instFaithfulRes, Rep.diagonalHomEquiv_apply, functorCategoryEquivalence_linear, Rep.coinvariantsAdjunction_unit_app_hom, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, instReflectsLimitForget, Rep.epi_iff_surjective, groupCohomology.cochainsFunctor_map, groupHomology.d₁₀_comp_coinvariantsMk_assoc, CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.coinvariantsShortComplex_X₂, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, functorCategoryEquivalence_preservesZeroMorphisms, groupHomology.H0π_comp_H0Iso_hom_assoc, Iso.conj_ρ, groupHomology.cyclesMap_comp, preservesColimit_of_preserves, rightUnitor_inv_hom, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_τ₃, res_linear, instPreservesColimitsOfShapeForgetOfHasColimitsOfShape, groupHomology.cyclesMap_comp_cyclesIso₀_hom_assoc, groupHomology.lsingle_comp_chainsMap_f_assoc, Rep.linearizationTrivialIso_hom_hom, Rep.instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, ContinuousCohomology.MultiInd.d_succ, Rep.coinvariantsAdjunction_homEquiv_apply_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.ihom_obj_ρ, instMonoidalLinear, resComp_hom_app_hom, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, functorCategoryEquivalence_additive, preservesColimitsOfShape_of_preserves, Rep.instIsLeftAdjointIndFunctor, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, Representation.linHom.invariantsEquivRepHom_apply_hom, groupHomology.cyclesMap_id, Rep.instAdditiveModuleCatInvariantsFunctor, forget₂_linear, isIso_hom_mk, FunctorCategoryEquivalence.functor_obj_map, CategoryTheory.PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, Rep.coindFunctor'_map, Rep.coinvariantsFunctor_map_hom, Rep.coindFunctor_obj, Rep.linearization_map_hom_single, comp_hom_assoc, groupCohomology.map_id_comp_H0Iso_hom_assoc, Rep.ihom_obj_ρ_def, Rep.ihom_obj_V_carrier, ContinuousCohomology.const_app_hom, ContAction.resComp_inv, instHasFiniteLimits, Rep.coinvariantsShortComplex_X₃, Rep.coindIso_hom_hom_hom, Rep.leftRegularTensorTrivialIsoFree_hom_hom, ContAction.res_map, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.mono_iff_injective, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, groupCohomology.functor_map, Rep.linearization_ε_hom, CategoryTheory.Equivalence.mapAction_inverse, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, Rep.Tor_obj, Rep.coinvariantsShortComplex_shortExact, resCongr_hom, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, Rep.FiniteCyclicGroup.resolution_π, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.H0π_comp_map_apply, groupCohomology.mapShortComplexH1_τ₁, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, groupCohomology.cochainsFunctor_obj, Rep.linearization_map_hom, β_hom_hom, CategoryTheory.FintypeCat.Action.isConnected_of_transitive, instReflectsColimitForget, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, CategoryTheory.PreGaloisCategory.functorToAction_full, leftUnitor_hom_hom, FunctorCategoryEquivalence.functor_η, Rep.indResHomEquiv_symm_apply_hom, ContinuousCohomology.instAdditiveActionTopModuleCatI, forget₂_additive, forget_map, groupHomology.chainsMap_f_0_comp_chainsIso₀, classifyingSpaceUniversalCover_obj, FintypeCat.toEndHom_trivial_of_mem, CategoryTheory.Functor.instFaithfulActionMapAction, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Rep.norm_comm, FunctorCategoryEquivalence.functor_ε, Rep.linearization_μ_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, CategoryTheory.PreGaloisCategory.instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, preservesLimit_of_preserves, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupCohomology.map_comp_assoc, groupCohomology.cochainsMap_id, Rep.instInjective, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
instConcreteCategoryHomSubtypeV 📖CompOp
19 mathmath: CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, Rep.norm_comm_apply, forget₂_preservesZeroMorphisms, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.εToSingle₀_comp_eq, Rep.applyAsHom_comm_apply, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, FDRep.forget₂_ρ, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, isContinuous_def, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, forget₂_linear, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, forget₂_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
instFunLikeHomSubtypeV 📖CompOp
20 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, Rep.norm_comm_apply, forget₂_preservesZeroMorphisms, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.εToSingle₀_comp_eq, Rep.applyAsHom_comm_apply, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, FDRep.forget₂_ρ, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, isContinuous_def, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, forget₂_linear, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, forget₂_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
instInhabitedAddCommGrpCat 📖CompOp—
mkIso 📖CompOp
10 mathmath: resCongr_inv, CategoryTheory.Functor.mapContActionCongr_inv, CategoryTheory.Functor.mapContActionCongr_hom, mkIso_hom_hom, ContAction.resCongr_hom, CategoryTheory.Functor.mapActionCongr_inv, CategoryTheory.Functor.mapActionCongr_hom, mkIso_inv_hom, ContAction.resCongr_inv, resCongr_hom
res 📖CompOp
161 mathmath: resCongr_inv, Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, groupHomology.mapCycles₂_comp_assoc, groupHomology.map₁_quotientGroupMk'_epi, groupCohomology.cocyclesMap_id_comp_assoc, Rep.coindResAdjunction_counit_app, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.mapCycles₁_comp_apply, groupHomology.mapShortComplexH1_zero, groupHomology.cyclesMap_id_comp, groupHomology.mapShortComplexH2_zero, Rep.coe_res_obj_ρ, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupHomology.mapCycles₁_comp_assoc, groupHomology.H0π_comp_map, groupCohomology.cochainsMap_comp, groupHomology.coresNatTrans_app, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.congr, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.H1CoresCoinfOfTrivial_X₁, groupCohomology.mapShortComplexH2_comp_assoc, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.mapCycles₁_id_comp_assoc, groupHomology.mapCycles₁_comp, groupHomology.map_comp, groupCohomology.map_comp, groupHomology.map_id_comp, Rep.coinvariantsTensorIndIso_inv, Rep.coindVEquiv_symm_apply_coe, groupHomology.H1CoresCoinf_X₁, groupHomology.mapCycles₂_id_comp, groupHomology.cyclesMap_comp_assoc, Rep.instIsLeftAdjointActionModuleCatRes, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, groupHomology.chainsMap_f_single, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, resId_inv_app_hom, groupCohomology.cochainsMap_zero, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, Rep.coindResAdjunction_unit_app, groupHomology.mapCycles₁_id_comp_apply, groupCohomology.cochainsMap_id_comp, groupCohomology.mapShortComplexH2_comp, groupCohomology.cochainsMap_comp_assoc, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.mapCycles₁_comp_i_apply, groupHomology.mapCycles₂_comp, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.coindMap'_hom, groupHomology.H0π_comp_map_assoc, res_additive, groupCohomology.H1InfRes_X₃, groupCohomology.cocyclesMap_comp, ContAction.res_obj_obj, groupCohomology.resNatTrans_app, groupCohomology.mapShortComplexH2_zero, Rep.resIndAdjunction_homEquiv_apply, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, res_obj_V, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, Rep.quotientToCoinvariantsFunctor_map_hom, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, Rep.resIndAdjunction_counit_app, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, Representation.coind'_apply_apply, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCycles₂_id_comp_assoc, Rep.coindIso_inv_hom_hom, groupHomology.mapShortComplexH2_comp, groupHomology.mapCycles₁_id_comp, res_map_hom, groupHomology.lsingle_comp_chainsMap_f, groupHomology.cyclesMap_comp_cyclesIso₀_hom, groupCohomology.cochainsMap_f, Rep.coind'_ext_iff, groupHomology.chainsMap_comp, groupCohomology.map_id_comp_assoc, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.congr, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, groupCohomology.H1InfRes_g, groupCohomology.mapShortComplexH1_id_comp, groupCohomology.cocyclesMap_comp_assoc, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, resComp_inv_app_hom, groupHomology.cyclesIso₀_inv_comp_cyclesMap_assoc, groupCohomology.map_id_comp, res_obj_ρ, full_res, groupHomology.chainsMap_f_hom, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.H1CoresCoinfOfTrivial_f, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, groupCohomology.mapCocycles₁_comp_i_apply, groupHomology.mapCycles₂_id_comp_apply, groupCohomology.cochainsMap_f_hom, groupHomology.H1CoresCoinfOfTrivial_g, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.mapShortComplexH1_zero, groupCohomology.mapShortComplexH1_comp_assoc, groupHomology.cyclesIso₀_inv_comp_cyclesMap, Rep.instIsRightAdjointActionModuleCatRes, groupCohomology.mapShortComplexH2_id_comp, Rep.resIndAdjunction_unit_app, resEquiv_inverse, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, groupHomology.chainsMap_zero, resId_hom_app_hom, groupHomology.mapShortComplexH2_id_comp, groupHomology.mapCycles₂_comp_i_apply, groupCohomology.cocyclesMap_id_comp, Rep.res_obj_ρ, resEquiv_functor, instFaithfulRes, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupHomology.cyclesMap_comp, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_τ₃, res_linear, groupHomology.cyclesMap_comp_cyclesIso₀_hom_assoc, groupHomology.lsingle_comp_chainsMap_f_assoc, groupHomology.H1CoresCoinf_f, resComp_hom_app_hom, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.coindIso_hom_hom_hom, ContAction.res_map, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, resCongr_hom, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.H0π_comp_map_apply, groupCohomology.mapShortComplexH1_τ₁, Rep.indResHomEquiv_symm_apply_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupCohomology.map_comp_assoc
resComp 📖CompOp
2 mathmath: resComp_inv_app_hom, resComp_hom_app_hom
resCongr 📖CompOp
2 mathmath: resCongr_inv, resCongr_hom
resEquiv 📖CompOp
2 mathmath: resEquiv_inverse, resEquiv_functor
resId 📖CompOp
2 mathmath: resId_inv_app_hom, resId_hom_app_hom
trivial 📖CompOp
6 mathmath: leftRegularTensorIso_inv_hom, diagonalSuccIsoTensorTrivial_inv_hom_apply, leftRegularTensorIso_hom_hom, trivial_ρ, diagonalSuccIsoTensorTrivial_hom_hom_apply, trivial_V
ρ 📖CompOp
40 mathmath: Rep.coe_linearization_obj_ρ, leftRegularTensorIso_inv_hom, ofMulAction_apply, FDRep.endRingEquiv_symm_comp_ρ, rightDual_ρ, Rep.linearization_single, Rep.ρ_hom, FunctorCategoryEquivalence.functor_map_app, ContinuousCohomology.I_obj_ρ_apply, ContinuousCohomology.Iobj_ρ_apply, tensorUnit_ρ, FDRep.hom_hom_action_ρ, CategoryTheory.Functor.mapAction_obj_ρ_apply, FunctorCategoryEquivalence.inverse_obj_ρ_apply, leftRegularTensorIso_hom_hom, ofMulAction_ρ, res_map_hom, Rep.linearization_obj_ρ, ρ_self_inv_apply, ρ_one, ρAut_apply_hom, trivial_ρ, Hom.comm_assoc, res_obj_ρ, Rep.ofHom_ρ, Rep.Action_ρ_eq_ρ, tensor_ρ, FDRep.of_ρ, isContinuous_def, CategoryTheory.Functor.mapAction_map_hom, leftDual_ρ, Iso.conj_ρ, Rep.ihom_obj_ρ, FunctorCategoryEquivalence.functor_obj_map, ρAut_apply_inv, Hom.comm, ρ_inv_self_apply, FDRep.hom_action_ρ, FDRep.endRingEquiv_comp_ρ, FintypeCat.ofMulAction_apply
ρAut 📖CompOp
2 mathmath: ρAut_apply_hom, ρAut_apply_inv

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hom 📖mathematical—Hom.hom
CategoryTheory.CategoryStruct.comp
Action
CategoryTheory.Category.toCategoryStruct
instCategory
V
——
comp_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
Hom.hom
Action
instCategory
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_hom
forget_map 📖mathematical—CategoryTheory.Functor.map
Action
instCategory
forget
Hom.hom
——
forget_obj 📖mathematical—CategoryTheory.Functor.obj
Action
instCategory
forget
V
——
full_res 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
CategoryTheory.Functor.Full
Action
instCategory
res
—Hom.comm
hom_ext
functorCategoryEquivalence_counitIso 📖mathematical—CategoryTheory.Equivalence.counitIso
Action
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
instCategory
CategoryTheory.Functor.category
functorCategoryEquivalence
FunctorCategoryEquivalence.counitIso
——
functorCategoryEquivalence_functor 📖mathematical—CategoryTheory.Equivalence.functor
Action
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
instCategory
CategoryTheory.Functor.category
functorCategoryEquivalence
FunctorCategoryEquivalence.functor
——
functorCategoryEquivalence_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
Action
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
instCategory
CategoryTheory.Functor.category
functorCategoryEquivalence
FunctorCategoryEquivalence.inverse
——
functorCategoryEquivalence_unitIso 📖mathematical—CategoryTheory.Equivalence.unitIso
Action
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
instCategory
CategoryTheory.Functor.category
functorCategoryEquivalence
FunctorCategoryEquivalence.unitIso
——
hom_ext 📖—Hom.hom——Hom.ext
hom_ext_iff 📖mathematical—Hom.hom—hom_ext
hom_injective 📖mathematical—Hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
V
Hom.hom
—Hom.ext
hom_inv_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
Hom.hom
CategoryTheory.Iso.hom
Action
instCategory
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
—comp_hom
CategoryTheory.Iso.hom_inv_id
id_hom
hom_inv_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
Hom.hom
CategoryTheory.Iso.hom
Action
instCategory
CategoryTheory.Iso.inv
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_hom
id_hom 📖mathematical—Hom.hom
CategoryTheory.CategoryStruct.id
Action
CategoryTheory.Category.toCategoryStruct
instCategory
V
——
instFaithfulForget 📖mathematical—CategoryTheory.Functor.Faithful
Action
instCategory
forget
—Hom.ext
instFaithfulRes 📖mathematical—CategoryTheory.Functor.Faithful
Action
instCategory
res
—hom_ext
res_map_hom
instIsEquivalenceFunctorSingleObjFunctor 📖mathematical—CategoryTheory.Functor.IsEquivalence
Action
instCategory
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
FunctorCategoryEquivalence.functor
—CategoryTheory.Equivalence.isEquivalence_functor
instIsEquivalenceFunctorSingleObjInverse 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
FunctorCategoryEquivalence.inverse
—CategoryTheory.Equivalence.isEquivalence_inverse
instIsIsoHomHom 📖mathematical—CategoryTheory.IsIso
V
Hom.hom
CategoryTheory.Iso.hom
Action
instCategory
—hom_inv_hom
inv_hom_hom
instIsIsoHomInv 📖mathematical—CategoryTheory.IsIso
V
Hom.hom
CategoryTheory.Iso.inv
Action
instCategory
—inv_hom_hom
hom_inv_hom
inv_hom_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
Hom.hom
CategoryTheory.Iso.inv
Action
instCategory
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
—comp_hom
CategoryTheory.Iso.inv_hom_id
id_hom
inv_hom_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
Hom.hom
CategoryTheory.Iso.inv
Action
instCategory
CategoryTheory.Iso.hom
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_hom
isIso_hom_mk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
DFunLike.coe
MonoidHom
CategoryTheory.End
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
CategoryTheory.IsIso
Action
instCategory
—CategoryTheory.Iso.isIso_hom
isIso_of_hom_isIso 📖mathematical—CategoryTheory.IsIso
Action
instCategory
—CategoryTheory.Iso.isIso_hom
Hom.comm
mkIso_hom_hom 📖mathematical—Hom.hom
CategoryTheory.Iso.hom
Action
instCategory
mkIso
V
——
mkIso_inv_hom 📖mathematical—Hom.hom
CategoryTheory.Iso.inv
Action
instCategory
mkIso
V
——
preservesColimits_forget 📖mathematical—CategoryTheory.Limits.PreservesColimits
Action
instCategory
forget
—CategoryTheory.Limits.preservesColimits_of_natIso
CategoryTheory.Limits.comp_preservesColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Limits.evaluation_preservesColimits
preservesLimits_forget 📖mathematical—CategoryTheory.Limits.PreservesLimits
Action
instCategory
forget
—CategoryTheory.Limits.preservesLimits_of_natIso
CategoryTheory.Limits.comp_preservesLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Limits.evaluationPreservesLimits
resComp_hom_app_hom 📖mathematical—Hom.hom
CategoryTheory.Functor.obj
Action
instCategory
CategoryTheory.Functor.comp
res
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
resComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
——
resComp_inv_app_hom 📖mathematical—Hom.hom
CategoryTheory.Functor.obj
Action
instCategory
res
MonoidHom.comp
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
resComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
——
resCongr_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
Action
instCategory
CategoryTheory.Functor.category
res
resCongr
CategoryTheory.Functor.obj
mkIso
CategoryTheory.Iso.refl
V
——
resCongr_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
Action
instCategory
CategoryTheory.Functor.category
res
resCongr
CategoryTheory.Functor.obj
mkIso
CategoryTheory.Iso.refl
V
——
resEquiv_functor 📖mathematical—CategoryTheory.Equivalence.functor
Action
instCategory
resEquiv
res
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
——
resEquiv_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
Action
instCategory
resEquiv
res
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
——
resId_hom_app_hom 📖mathematical—Hom.hom
CategoryTheory.Functor.obj
Action
instCategory
res
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
resId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
——
resId_inv_app_hom 📖mathematical—Hom.hom
CategoryTheory.Functor.obj
Action
instCategory
CategoryTheory.Functor.id
res
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
resId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
——
res_map_hom 📖mathematical—Hom.hom
V
MonoidHom.comp
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
ρ
CategoryTheory.Functor.map
Action
instCategory
res
——
res_obj_V 📖mathematical—V
CategoryTheory.Functor.obj
Action
instCategory
res
——
res_obj_ρ 📖mathematical—ρ
CategoryTheory.Functor.obj
Action
instCategory
res
MonoidHom.comp
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
V
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
——
trivial_V 📖mathematical—V
trivial
——
trivial_ρ 📖mathematical—ρ
trivial
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
instOneMonoidHom
——
ρAut_apply_hom 📖mathematical—CategoryTheory.Iso.hom
V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
ρAut
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.End.monoid
ρ
——
ρAut_apply_inv 📖mathematical—CategoryTheory.Iso.inv
V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
MonoidHom
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
ρAut
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.End.monoid
ρ
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
——
ρ_one 📖mathematical—DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
V
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
MulOne.toOne
CategoryTheory.CategoryStruct.id
—map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass

Action.FunctorCategoryEquivalence

Definitions

NameCategoryTheorems
counitIso 📖CompOp
3 mathmath: counitIso_inv_app_app, Action.functorCategoryEquivalence_counitIso, counitIso_hom_app_app
functor 📖CompOp
13 mathmath: counitIso_inv_app_app, functor_obj_obj, unitIso_inv_app_hom, functor_map_app, functor_δ, Action.functorCategoryEquivalence_functor, Action.instIsEquivalenceFunctorSingleObjFunctor, unitIso_hom_app_hom, counitIso_hom_app_app, functor_Ο, functor_obj_map, functor_Ρ, functor_ξ
inverse 📖CompOp
9 mathmath: Action.instIsEquivalenceFunctorSingleObjInverse, Action.functorCategoryEquivalence_inverse, counitIso_inv_app_app, unitIso_inv_app_hom, inverse_obj_ρ_apply, inverse_obj_V, unitIso_hom_app_hom, inverse_map_hom, counitIso_hom_app_app
unitIso 📖CompOp
3 mathmath: Action.functorCategoryEquivalence_unitIso, unitIso_inv_app_hom, unitIso_hom_app_hom

Theorems

NameKindAssumesProvesValidatesDepends On
counitIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
Action
Action.instCategory
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
counitIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Action
Action.instCategory
inverse
functor
CategoryTheory.Iso.inv
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
functor_map_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action.V
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
CategoryTheory.Functor.map
Action
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
Action.Hom.hom
——
functor_obj_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.obj
Action
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
Action.V
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
——
functor_obj_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
Action.V
——
inverse_map_hom 📖mathematical—Action.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MulOne.toOne
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
Action
Action.instCategory
inverse
CategoryTheory.NatTrans.app
——
inverse_obj_V 📖mathematical—Action.V
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
Action.instCategory
inverse
——
inverse_obj_ρ_apply 📖mathematical—DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
CategoryTheory.Functor
CategoryTheory.Functor.category
Action
Action.instCategory
inverse
CategoryTheory.Functor.map
——
unitIso_hom_app_hom 📖mathematical—Action.Hom.hom
CategoryTheory.Functor.obj
Action
Action.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Action.V
——
unitIso_inv_app_hom 📖mathematical—Action.Hom.hom
CategoryTheory.Functor.obj
Action
Action.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Action.V
——

Action.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: comp_hom
hom 📖CompOp
218 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, Action.leftRegularTensorIso_inv_hom, Action.neg_hom, Action.inv_hom_hom_assoc, Action.sum_hom, Rep.diagonalSuccIsoFree_inv_hom_single, Representation.repOfTprodIso_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, Rep.resCoindAdjunction_counit_app_hom_hom, Rep.leftRegularHom_hom, Action.diagonalSuccIsoTensorDiagonal_inv_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.Functor.mapAction_δ_hom, Rep.diagonalHomEquiv_symm_apply, comp_hom, Action.leftUnitor_inv_hom, Action.comp_hom, groupHomology.H0π_comp_map, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Action.whiskerRight_hom, groupCohomology.map_H0Iso_hom_f_apply, Rep.standardComplex.d_eq, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, Rep.resCoindAdjunction_unit_app_hom_hom, Rep.instEpiModuleCatHom, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, Action.smul_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, Rep.indCoindIso_inv_hom_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, Action.FunctorCategoryEquivalence.unitIso_inv_app_hom, Rep.ihom_ev_app_hom, Action.FunctorCategoryEquivalence.functor_map_app, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.subtype_hom, Rep.coindVEquiv_symm_apply_coe, Rep.indCoindIso_hom_hom_hom, Action.hom_inv_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, groupHomology.chainsMap_f_single, Action.mkIso_hom_hom, groupCohomology.map_H0Iso_hom_f, Action.resId_inv_app_hom, Rep.indToCoindAux_comm, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, Action.instIsIsoHomInv, CategoryTheory.Functor.mapAction_η_hom, Rep.indResAdjunction_counit_app_hom_hom, Action.FintypeCat.toEndHom_apply, Action.hom_ext_iff, groupHomology.mapCycles₁_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, Action.hom_injective, Action.nsmul_hom, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, Rep.coindMap'_hom, groupHomology.H0π_comp_map_assoc, Rep.freeLiftLEquiv_apply, Action.id_hom, Action.sub_hom, Rep.finsuppTensorRight_hom_hom, groupCohomology.norm_ofAlgebraAutOnUnits_eq, CategoryTheory.Functor.mapAction_ε_hom, TannakaDuality.FiniteGroup.forget_map, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_η_hom_apply, Rep.quotientToInvariantsFunctor_map_hom, Rep.quotientToCoinvariantsFunctor_map_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, id_hom, Action.leftRegularTensorIso_hom_hom, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, ContinuousCohomology.I_map_hom, CategoryTheory.Functor.mapAction_μ_hom, Rep.diagonalOneIsoLeftRegular_inv_hom, Action.FintypeCat.quotientToEndHom_mk, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, Rep.coindIso_inv_hom_hom, Action.zero_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupHomology.chainsMap_id_f_hom_eq_mapRange, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Action.res_map_hom, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.toCoinvariantsMkQ_hom, groupHomology.lsingle_comp_chainsMap_f, Action.instIsIsoHomHom, Rep.invariantsAdjunction_counit_app_hom, groupHomology.cyclesMap_comp_cyclesIso₀_hom, groupCohomology.cochainsMap_f, Rep.coind'_ext_iff, CategoryTheory.PreGaloisCategory.functorToAction_map, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, Rep.linearizationTrivialIso_inv_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, Action.add_hom, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, comm_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coindVEquiv_apply_hom, Action.resComp_inv_app_hom, Rep.trivialFunctor_map_hom, groupHomology.cyclesIso₀_inv_comp_cyclesMap_assoc, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, Action.FunctorCategoryEquivalence.unitIso_hom_app_hom, Action.hom_inv_hom_assoc, Rep.ihom_map_hom, ext_iff, Action.tensorHom_hom, Action.inv_hom_hom, Rep.finsuppTensorLeft_inv_hom, Action.associator_hom_hom, Rep.leftRegularHomEquiv_symm_single, Rep.leftRegularTensorTrivialIsoFree_inv_hom, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupHomology.chainsMap_f_hom, Rep.norm_hom, Action.mkIso_inv_hom, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.map_id_comp_H0Iso_hom_apply, Action.FintypeCat.quotientToQuotientOfLE_hom_mk, Action.FunctorCategoryEquivalence.inverse_map_hom, Rep.linearization_δ_hom, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, Action.whiskerLeft_hom, groupCohomology.mapCocycles₁_comp_i_apply, Rep.coindMap_hom, Action.zsmul_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, Rep.hom_comm_apply, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.cyclesIso₀_inv_comp_cyclesMap, Rep.indMap_hom, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, Rep.invariantsFunctor_map_hom, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.ihom_coev_app_hom, Action.β_inv_hom, Rep.leftRegularHomEquiv_apply, Action.diagonalSuccIsoTensorDiagonal_hom_hom, Action.resId_hom_app_hom, Action.rightUnitor_hom_hom, Action.diagonalSuccIsoTensorTrivial_hom_hom_apply, groupHomology.mapCycles₂_comp_i_apply, Rep.freeLift_hom, CategoryTheory.Functor.mapAction_map_hom, Action.associator_inv_hom, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, Rep.diagonalHomEquiv_apply, Rep.coinvariantsAdjunction_unit_app_hom, Rep.epi_iff_surjective, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.applyAsHom_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, Action.rightUnitor_inv_hom, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_τ₃, groupHomology.cyclesMap_comp_cyclesIso₀_hom_assoc, groupHomology.lsingle_comp_chainsMap_f_assoc, Rep.linearizationTrivialIso_hom_hom, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, Rep.coinvariantsAdjunction_homEquiv_apply_hom, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.free_ext_iff, Action.resComp_hom_app_hom, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, TannakaDuality.FiniteGroup.ofRightFDRep_hom, Representation.linHom.invariantsEquivRepHom_apply_hom, Rep.mkQ_hom, Rep.coinvariantsFunctor_map_hom, comm, Rep.linearization_map_hom_single, Action.comp_hom_assoc, ContinuousCohomology.const_app_hom, Rep.coindIso_hom_hom_hom, Rep.leftRegularTensorTrivialIsoFree_hom_hom, Rep.barComplex.d_single, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, Rep.instMonoModuleCatHom, Rep.linearization_ε_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, groupHomology.H0π_comp_map_apply, groupCohomology.mapShortComplexH1_τ₁, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.linearization_map_hom, Action.β_hom_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, Action.leftUnitor_hom_hom, Rep.indResHomEquiv_symm_apply_hom, Action.forget_map, groupHomology.chainsMap_f_0_comp_chainsIso₀, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Rep.linearization_μ_hom, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply
id 📖CompOp
1 mathmath: id_hom
instInhabited 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Action.V
DFunLike.coe
MonoidHom
CategoryTheory.End
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
hom
——
comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Action.V
DFunLike.coe
MonoidHom
CategoryTheory.End
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comp_hom 📖mathematical—hom
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Action.V
——
ext 📖—hom———
ext_iff 📖mathematical—hom—ext
id_hom 📖mathematical—hom
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Action.V
——

Action.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
conj_ρ 📖mathematical—DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
Action.V
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
MulEquiv
CategoryTheory.Functor.obj
Action
Action.instCategory
Action.forget
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
CategoryTheory.Iso.conj
CategoryTheory.Functor.mapIso
—CategoryTheory.Iso.conj_apply
CategoryTheory.Iso.eq_inv_comp
Action.Hom.comm

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
mapAction 📖CompOp
2 mathmath: mapAction_functor, mapAction_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
mapAction_functor 📖mathematical—functor
Action
Action.instCategory
mapAction
CategoryTheory.Functor.mapAction
——
mapAction_inverse 📖mathematical—inverse
Action
Action.instCategory
mapAction
CategoryTheory.Functor.mapAction
——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapAction 📖CompOp
25 mathmath: mapAction_δ_hom, Action.Functor.mapActionPreservesLimitsOfShapeOfPreserves, mapActionComp_hom, Action.Functor.mapActionPreservesLimit_of_preserves, mapActionComp_inv, Action.Functor.mapActionPreservesColimit_of_preserves, CategoryTheory.Equivalence.mapAction_functor, Action.Functor.instPreservesFiniteLimitsMapActionOfHasFiniteLimits, mapAction_Ρ_hom, mapAction_obj_ρ_apply, mapAction_linear, mapAction_ξ_hom, mapAction_obj_V, mapAction_preadditive, mapAction_Ο_hom, instFullActionMapActionOfFaithful, Action.Functor.instPreservesFiniteColimitsMapActionOfHasFiniteColimits, mapActionCongr_inv, Action.Functor.preservesLimitsOfSize_of_preserves, mapActionCongr_hom, Action.Functor.preservesColimitsOfSize_of_preserves, mapAction_map_hom, Action.Functor.mapActionPreservesColimitsOfShapeOfPreserves, CategoryTheory.Equivalence.mapAction_inverse, instFaithfulActionMapAction
mapActionComp 📖CompOp
2 mathmath: mapActionComp_hom, mapActionComp_inv
mapActionCongr 📖CompOp
2 mathmath: mapActionCongr_inv, mapActionCongr_hom

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulActionMapAction 📖mathematical—Faithful
Action
Action.instCategory
mapAction
—Action.hom_ext
map_injective
instFullActionMapActionOfFaithful 📖mathematical—Full
Action
Action.instCategory
mapAction
—FullyFaithful.full
mapActionComp_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
Action
Action.instCategory
category
mapAction
comp
mapActionComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Iso.refl
——
mapActionComp_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
Action
Action.instCategory
category
mapAction
comp
mapActionComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Iso.refl
——
mapActionCongr_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
Action
Action.instCategory
category
mapAction
mapActionCongr
obj
Action.mkIso
CategoryTheory.Iso.app
Action.V
——
mapActionCongr_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
Action
Action.instCategory
category
mapAction
mapActionCongr
obj
Action.mkIso
CategoryTheory.Iso.app
Action.V
——
mapAction_map_hom 📖mathematical—Action.Hom.hom
obj
Action.V
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MulOne.toOne
map
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
Action.ρ
Action
Action.instCategory
mapAction
——
mapAction_obj_V 📖mathematical—Action.V
obj
Action
Action.instCategory
mapAction
——
mapAction_obj_ρ_apply 📖mathematical—DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
obj
Action.V
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
Action
Action.instCategory
mapAction
map
——

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
mapAction 📖CompOp—

---

← Back to Index