| Name | Category | Theorems |
HomSubtype đ | CompOp | 20 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForgetâContinuousMap, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, Rep.norm_comm_apply, forgetâ_preservesZeroMorphisms, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.ÎľToSingleâ_comp_eq, Rep.applyAsHom_comm_apply, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, FDRep.forgetâ_Ď, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, isContinuous_def, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetâHomSubtypeHomCarrierV, forgetâ_linear, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, forgetâ_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forgetâ_eq
|
V đ | CompOp | 651 mathmath: resCongr_inv, Rep.resCoindHomEquiv_symm_apply_hom, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2Ď, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForgetâContinuousMap, groupHomology.Ď_comp_H2Iso_hom_assoc, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.coe_linearization_obj_Ď, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, leftRegularTensorIso_inv_hom, groupCohomology.isoCocyclesâ_hom_comp_i_apply, neg_hom, groupCohomology.mem_cocyclesâ_def, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, groupCohomology.dââ_hom_apply, inv_hom_hom_assoc, groupHomology.dââ_single_one, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, groupHomology.boundariesâ_le_cyclesâ, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, sum_hom, groupCohomology.Ď_comp_H0IsoOfIsTrivial_hom_assoc, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.dââ_comp_dââ, Representation.repOfTprodIso_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, ContinuousCohomology.I_obj_V_carrier, groupCohomology.cocyclesIsoâ_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.dââ_single, ofMulAction_apply, groupCohomology.eq_dââ_comp_inv, groupCohomology.H1Ď_comp_map_assoc, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.Ď_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_Ď, groupHomology.H0IsoOfIsTrivial_inv_eq_Ď, groupCohomology.Ď_comp_H1Iso_hom_assoc, CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected, groupCohomology.eq_dââ_comp_inv, Rep.indToCoindAux_self, groupCohomology.mapCocyclesâ_comp_i, groupHomology.eq_dââ_comp_inv, diagonalSuccIsoTensorDiagonal_inv_hom, Rep.coe_res_obj_Ď, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.Functor.mapAction_δ_hom, Rep.diagonalHomEquiv_symm_apply, tensorObj_V, groupCohomology.H0IsoOfIsTrivial_hom, TannakaDuality.FiniteGroup.forget_obj, Hom.comp_hom, groupCohomology.coe_mapCocyclesâ, groupHomology.mem_cyclesâ_iff, groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.dââ_hom_apply, groupHomology.comp_dââ_eq, groupCohomology.coboundariesToCocyclesâ_apply, groupHomology.mapCyclesâ_comp_assoc, leftUnitor_inv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, comp_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupHomology.H0Ď_comp_map, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, rightDual_Ď, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.comp_dââ_eq, groupCohomology.mem_cocyclesâ_of_addMonoidHom, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, Rep.linearization_single, groupHomology.dââ_single_one_thd, whiskerRight_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_dââ_comp_inv_assoc, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_dââ_comp_inv_apply, CategoryTheory.Functor.mapContActionCongr_inv, groupCohomology.eq_dââ_comp_inv_apply, groupHomology.chainsâToCoinvariantsKer_surjective, FunctorCategoryEquivalence.functor_obj_obj, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, groupHomology.cyclesâ_eq_top_of_isTrivial, groupHomology.Ď_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.mem_cocyclesâ_def, Rep.instEpiModuleCatHom, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.groupHomologyĎOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesâ, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, Rep.norm_comm_apply, forgetâ_preservesZeroMorphisms, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, smul_hom, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, groupCohomology.coboundariesâ_eq_bot_of_isTrivial, groupHomology.dââ_single_inv_mul_Ď_add_single, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, groupCohomology.cocyclesâ_map_one_fst, Rep.indCoindIso_inv_hom_hom, groupCohomology.mapCocyclesâ_comp_i_assoc, groupHomology.dââ_comp_coinvariantsMk_apply, Rep.Ď_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.eq_dââ_comp_inv, CategoryTheory.Functor.mapContActionCongr_hom, groupCohomology.cocyclesâIsoOfIsTrivial_hom_hom_apply_apply, groupCohomology.H2Ď_comp_map_apply, groupHomology.mapCyclesâ_comp, FunctorCategoryEquivalence.unitIso_inv_app_hom, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, FunctorCategoryEquivalence.functor_map_app, groupCohomology.dArrowIsoââ_hom_right, Rep.MonoidalClosed.linearHomEquivComm_hom, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, Rep.coe_linearization_obj, ContinuousCohomology.I_obj_Ď_apply, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, groupHomology.mapCyclesâ_comp_i, groupCohomology.shortComplexH0_f, groupCohomology.cocyclesOfIsCocycleâ_coe, groupCohomology.coboundariesâ_le_cocyclesâ, Rep.standardComplex.ÎľToSingleâ_comp_eq, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1Ď_apply_apply, Rep.indCoindIso_hom_hom_hom, groupCohomology.comp_dââ_eq, groupCohomology.coboundariesâ.val_eq_coe, hom_inv_hom, Rep.ofModuleMonoidAlgebra_obj_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesâ, Rep.FiniteCyclicGroup.groupCohomologyĎOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_assoc, groupCohomology.infNatTrans_app, groupCohomology.dââ_apply_mem_cocyclesâ, Rep.invariantsAdjunction_unit_app, groupHomology.mapCyclesâ_id_comp, groupCohomology.dââ_apply_mem_cocyclesâ, Rep.indToCoindAux_fst_mul_inv, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.dââ_single_inv_self_Ď_sub_self_inv, groupHomology.chainsMap_f_single, groupCohomology.Ď_comp_H0IsoOfIsTrivial_hom, groupCohomology.subtype_comp_dââ_apply, ContinuousCohomology.Iobj_Ď_apply, groupCohomology.H2Ď_eq_iff, groupCohomology.comp_dââ_eq, mkIso_hom_hom, groupCohomology.cocyclesâ_map_one_snd, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, TannakaDuality.FiniteGroup.sumSMulInv_apply, groupHomology.mapCyclesâ_comp_i, groupCohomology.map_H0Iso_hom_f, groupHomology.boundariesOfIsBoundaryâ_coe, resId_inv_app_hom, FDRep.instFiniteDimensionalCarrierVFGModuleCat, Rep.indToCoindAux_comm, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ď_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyĎEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, groupHomology.cyclesIsoâ_comp_H0Ď_apply, groupHomology.eq_dââ_comp_inv_apply, FDRep.average_char_eq_finrank_invariants, groupCohomology.cocyclesâ_Ď_map_inv_sub_map_inv, Rep.toAdditive_symm_apply, groupHomology.single_one_fst_sub_single_one_fst_mem_boundariesâ, instIsIsoHomInv, groupHomology.mapCyclesâ_id_comp_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, Rep.ofMulDistribMulAction_Ď_apply_apply, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdĎ, groupCohomology.instEpiModuleCatH1Ď, groupCohomology.H2Ď_comp_map, groupHomology.Ď_comp_H2Iso_hom, Rep.indResAdjunction_counit_app_hom_hom, FDRep.hom_hom_action_Ď, CategoryTheory.Functor.mapAction_obj_Ď_apply, FintypeCat.toEndHom_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, groupHomology.mapCyclesâ_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyĎEven_eq_iff, groupHomology.mapCyclesâ_comp, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.coe_of, groupCohomology.isoCocyclesâ_hom_comp_i, groupCohomology.Ď_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, hom_injective, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, nsmul_hom, groupHomology.comp_dââ_eq, groupHomology.H1Ď_comp_map_apply, groupHomology.H0Ď_comp_map_assoc, groupCohomology.dArrowIsoââ_hom_left, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupHomology.Ď_comp_H0Iso_hom_apply, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.cocyclesâ_map_inv, Rep.freeLiftLEquiv_apply, groupCohomology.mapCocyclesâ_one, groupHomology.H2Ď_comp_map_assoc, Rep.indToCoindAux_mul_fst, groupHomology.Ď_comp_H0IsoOfIsTrivial_hom_apply, id_hom, Rep.ihom_obj_Ď_apply, sub_hom, groupHomology.dââArrowIso_inv_right, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.Ď_comp_H0Iso_hom_assoc, CategoryTheory.Functor.mapAction_obj_V, groupCohomology.mem_cocyclesâ_iff, Rep.tensor_Ď, Rep.toAdditive_apply, groupCohomology.H2Ď_comp_map_assoc, groupHomology.dââ_comp_coinvariantsMk, groupHomology.dââ_comp_dââ_apply, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.ofDistribMulAction_Ď_apply_apply, groupCohomology.dââ_ker_eq_invariants, Rep.linearization_Ρ_hom_apply, res_obj_V, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, FDRep.char_linHom, forget_obj, groupHomology.H2Ď_eq_iff, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocyclesâ_iff, groupHomology.range_dââ_eq_coinvariantsKer, groupCohomology.inhomogeneousCochains.d_comp_d, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.Ď_comp_H0IsoOfIsTrivial_hom_apply, rightDual_v, Rep.coinvariantsShortComplex_f, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, Hom.id_hom, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, groupHomology.Ď_comp_H0IsoOfIsTrivial_hom, leftRegularTensorIso_hom_hom, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, ContinuousCohomology.I_map_hom, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundaryâ_coe, groupHomology.cyclesIsoâ_inv_comp_iCycles, CategoryTheory.Functor.mapAction_Îź_hom, Representation.coind'_apply_apply, groupCohomology.dââ_comp_dââ_assoc, FintypeCat.quotientToEndHom_mk, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.Ď_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, zero_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocyclesâ_map_mul_of_isTrivial, groupCohomology.subtype_comp_dââ_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, groupHomology.toCycles_comp_isoCyclesâ_hom, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.mapCyclesâ_id_comp, Rep.trivialFunctor_obj_V, Rep.indToCoindAux_mul_snd, groupCohomology.cocyclesâIsoOfIsTrivial_inv_hom_apply_coe, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupHomology.eq_dââ_comp_inv, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, groupHomology.isoShortComplexH1_inv, res_map_hom, groupCohomology.coboundariesOfIsMulCoboundaryâ_coe, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.dââ_comp_dââ, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_Ď, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, instIsIsoHomHom, groupCohomology.H1Ď_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, groupHomology.cyclesMap_comp_cyclesIsoâ_hom, groupCohomology.cochainsMap_f, groupCohomology.coboundariesâ.val_eq_coe, groupHomology.dââ_single_one_fst, inhomogeneousCochains.d_hom_apply, Rep.coind'_ext_iff, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_self_inv_Ď_sub_inv_self, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, groupHomology.single_Ď_self_add_single_inv_mem_boundariesâ, groupHomology.H1ToTensorOfIsTrivial_H1Ď_single, Rep.FiniteCyclicGroup.groupHomologyĎEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, Ď_self_inv_apply, Rep.linearizationTrivialIso_inv_hom, groupHomology.cyclesOfIsCycleâ_coe, groupHomology.chainsMap_f_0_comp_chainsIsoâ_assoc, Rep.quotientToInvariantsFunctor_obj_V, FDRep.char_one, groupHomology.inhomogeneousChains.ext_iff, Ď_one, groupHomology.dââ_apply_mem_cyclesâ, groupCohomology.coboundariesToCocyclesâ_apply, add_hom, ĎAut_apply_hom, groupCohomology.H1Ď_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupCohomology.H2Ď_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i_assoc, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, groupCohomology.cocyclesâ.val_eq_coe, TannakaDuality.FiniteGroup.sumSMulInv_single_id, groupCohomology.H1Ď_comp_map_apply, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesâ_map_one, groupHomology.eq_dââ_comp_inv_assoc, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, CategoryTheory.Functor.mapActionCongr_inv, groupCohomology.Ď_comp_H2Iso_hom_assoc, Hom.comm_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, Rep.coindVEquiv_apply_hom, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, FunctorCategoryEquivalence.inverse_obj_V, groupHomology.H1Ď_eq_zero_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ď_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.dââ_single_one_fst, resComp_inv_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.H2Ď_comp_map, groupCohomology.cocyclesâ.val_eq_coe, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_assoc, groupCohomology.eq_dââ_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyĎEven_eq_iff, FunctorCategoryEquivalence.unitIso_hom_app_hom, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv, groupHomology.H1Ď_comp_map_assoc, hom_inv_hom_assoc, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1Ď, tensorHom_hom, inv_hom_hom, groupHomology.H1AddEquivOfIsTrivial_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, associator_hom_hom, res_obj_Ď, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesâ, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2Ď, CategoryTheory.Functor.mapActionCongr_hom, groupCohomology.cocyclesMkâ_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupHomology.H1Ď_comp_map, groupHomology.chainsMap_f_hom, groupHomology.dââ_apply_mem_cyclesâ, mkIso_inv_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_Ď, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.boundariesOfIsBoundaryâ_coe, FintypeCat.quotientToQuotientOfLE_hom_mk, groupHomology.cyclesMkâ_eq, groupHomology.cyclesIsoâ_comp_H0Ď_assoc, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, Rep.Action_Ď_eq_Ď, Rep.linearization_δ_hom, groupHomology.instEpiModuleCatH0Ď, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ, whiskerLeft_hom, groupCohomology.mapCocyclesâ_comp_i_apply, Rep.coindMap_hom, groupHomology.mapCyclesâ_id_comp_apply, zsmul_hom, Rep.trivial_def, groupCohomology.cocyclesâ_ext_iff, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, Rep.invariantsAdjunction_homEquiv_apply_hom, Rep.hom_comm_apply, groupHomology.H2Ď_comp_map_apply, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, groupCohomology.coboundariesâ_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyĎOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, groupHomology.Ď_comp_H0Iso_hom, groupCohomology.Ď_comp_H2Iso_hom_apply, Rep.coinvariantsTensorMk_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap, Rep.indMap_hom, tensorUnit_V, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.H0Ď_comp_H0Iso_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, FDRep.forgetâ_Ď, Rep.invariantsFunctor_map_hom, groupHomology.dââ_eq_zero_of_isTrivial, groupCohomology.Ď_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.dââ_comp_dââ_assoc, tensor_Ď, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.dââ_single_one_snd, groupHomology.Ď_comp_H0IsoOfIsTrivial_hom_assoc, FDRep.instFiniteCarrierVFGModuleCat, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_one_snd, groupHomology.Ď_comp_H2Iso_hom_apply, FDRep.Iso.conj_Ď, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, groupHomology.mapCyclesâ_hom, β_inv_hom, Rep.leftRegularHomEquiv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, diagonalSuccIsoTensorDiagonal_hom_hom, FDRep.char_dual, resId_hom_app_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCyclesâ, rightUnitor_hom_hom, groupHomology.toCycles_comp_isoCyclesâ_hom, groupCohomology.dââ_comp_dââ_apply, leftDual_v, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCyclesâ_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, groupHomology.boundariesToCyclesâ_apply, groupCohomology.subtype_comp_dââ, groupHomology.cyclesOfIsCycleâ_coe, Rep.freeLift_hom, groupHomology.isoCyclesâ_hom_comp_i, isContinuous_def, groupHomology.Ď_comp_H1Iso_hom, groupHomology.isoCyclesâ_inv_comp_iCycles, CategoryTheory.Functor.mapAction_map_hom, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, Rep.indToCoindAux_snd_mul_inv, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, Rep.res_obj_Ď, groupCohomology.H1Ď_comp_H1IsoOfIsTrivial_hom, associator_inv_hom, groupCohomology.coboundariesâ_le_cocyclesâ, Rep.ihom_obj_V_isModule, groupHomology.dââArrowIso_hom_right, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundariesâ, leftDual_Ď, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupHomology.cyclesIsoâ_comp_H0Ď, groupCohomology.isoCocyclesâ_hom_comp_i_apply, Rep.diagonalHomEquiv_apply, groupHomology.dââ_single, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.epi_iff_surjective, groupCohomology.coboundariesâ_ext_iff, groupHomology.dââ_comp_coinvariantsMk_assoc, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycleâ_coe, groupHomology.cyclesMkâ_eq, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupHomology.H0Ď_comp_H0Iso_hom_assoc, groupCohomology.H1Ď_comp_map, Iso.conj_Ď, groupHomology.single_inv_Ď_self_add_single_mem_boundariesâ, rightUnitor_inv_hom, Rep.indResHomEquiv_apply_hom, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_assoc, groupCohomology.cocyclesMkâ_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, Rep.linearizationTrivialIso_hom_hom, groupHomology.single_mem_cyclesâ_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundariesâ_le_cyclesâ, groupHomology.cyclesIsoâ_inv_comp_iCycles_assoc, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.ihom_obj_Ď, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, Rep.free_ext_iff, resComp_hom_app_hom, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupCohomology.cocyclesâ_ext_iff, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetâHomSubtypeHomCarrierV, TannakaDuality.FiniteGroup.ofRightFDRep_hom, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, groupCohomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, forgetâ_linear, FunctorCategoryEquivalence.functor_obj_map, groupHomology.dââArrowIso_inv_left, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cyclesâ_iff, Rep.coinvariantsFunctor_map_hom, ĎAut_apply_inv, groupHomology.dââ_single_Ď_add_single_inv_mul, Hom.comm, Ď_inv_self_apply, Rep.linearization_map_hom_single, comp_hom_assoc, groupCohomology.isoShortComplexH2_inv, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.eq_dââ_comp_inv_apply, Rep.ihom_obj_V_carrier, ContinuousCohomology.const_app_hom, ofMulAction_V, Rep.coindIso_hom_hom_hom, groupHomology.H0Ď_comp_H0Iso_hom_apply, Rep.barComplex.d_single, FDRep.hom_action_Ď, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, Rep.instMonoModuleCatHom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.coe_mapCocyclesâ, groupCohomology.eq_dââ_comp_inv_assoc, groupCohomology.H1Ď_comp_H1IsoOfIsTrivial_hom_assoc, groupCohomology.H1Ď_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, resCongr_hom, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.mapCyclesâ_comp_i_assoc, groupHomology.H0Ď_comp_map_apply, trivial_V, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundaryâ_coe, Rep.FiniteCyclicGroup.resolution.Ď_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, FDRep.endRingEquiv_comp_Ď, Rep.linearization_map_hom, β_hom_hom, groupHomology.mem_cyclesâ_iff, Rep.FiniteCyclicGroup.groupCohomologyĎOdd_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i, groupHomology.boundariesToCyclesâ_apply, groupHomology.single_mem_cyclesâ_iff_inv, groupHomology.dââ_single, leftUnitor_hom_hom, groupCohomology.cocyclesâ.dââ_apply, Rep.indResHomEquiv_symm_apply_hom, forgetâ_additive, groupHomology.isoCyclesâ_hom_comp_i_assoc, groupHomology.comp_dââ_eq, groupCohomology.Ď_comp_H2Iso_hom, groupHomology.chainsMap_f_0_comp_chainsIsoâ, groupHomology.H2Ď_eq_zero_iff, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, Rep.linearization_Îź_hom, FintypeCat.ofMulAction_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1Ď_eq_iff, groupHomology.dââ_comp_dââ_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.dââ_eq_zero, CategoryTheory.PreGaloisCategory.functorToAction_comp_forgetâ_eq
|
actionPUnitEquivalence đ | CompOp | â |
actionPunitEquivalence đ | CompOp | â |
forget đ | CompOp | 44 mathmath: forget_Ρ, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget, instReflectsLimitsOfShapeForget, groupHomology.Ď_comp_H0Iso_hom_assoc, forget_preservesZeroMorphisms, instPreservesColimitForgetOfHasColimitComp, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_assoc, preservesColimits_forget, groupHomology.coinvariantsMk_comp_H0Iso_inv, instPreservesFiniteLimitsForgetOfHasFiniteLimits, Rep.coinvariantsFunctor_hom_ext_iff, instFaithfulForget, Rep.instEpiModuleCatAppActionCoinvariantsMk, forget_δ, preservesLimits_forget, groupHomology.dââ_comp_coinvariantsMk, instPreservesLimitForgetOfHasLimitComp, forget_obj, forget_additive, instPreservesFiniteColimitsForgetOfHasFiniteColimits, instReflectsColimitsForget, instReflectsColimitsOfShapeForget, instPreservesLimitsOfShapeForgetOfHasLimitsOfShape, Rep.coinvariantsMk_app_hom, forget_Îľ, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv, instReflectsLimitsForget, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, groupHomology.Ď_comp_H0Iso_hom, groupHomology.H0Ď_comp_H0Iso_hom, forget_linear, forget_Îź, groupHomology.shortComplexH0_g, Rep.coinvariantsAdjunction_unit_app_hom, instReflectsLimitForget, groupHomology.dââ_comp_coinvariantsMk_assoc, groupHomology.H0Ď_comp_H0Iso_hom_assoc, Iso.conj_Ď, instPreservesColimitsOfShapeForgetOfHasColimitsOfShape, Rep.coinvariantsAdjunction_homEquiv_apply_hom, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, instReflectsColimitForget, forget_map
|
functorCategoryEquivalence đ | CompOp | 25 mathmath: Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, functorCategoryEquivalence_inverse, functorCategoryEquivalence_unitIso, leftUnitor_inv_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, whiskerRight_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, Rep.homEquiv_apply_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, functorCategoryEquivalence_functor, diagonalSuccIsoTensorTrivial_inv_hom_apply, functorCategoryEquivalence_counitIso, tensorHom_hom, associator_hom_hom, whiskerLeft_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.homEquiv_symm_apply_hom, Rep.ihom_coev_app_hom, rightUnitor_hom_hom, associator_inv_hom, functorCategoryEquivalence_linear, functorCategoryEquivalence_preservesZeroMorphisms, rightUnitor_inv_hom, functorCategoryEquivalence_additive, leftUnitor_hom_hom
|
functorCategoryEquivalenceCompEvaluation đ | CompOp | â |
hasForgetToV đ | CompOp | 10 mathmath: forgetâ_preservesZeroMorphisms, Rep.standardComplex.ÎľToSingleâ_comp_eq, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetâHomSubtypeHomCarrierV, forgetâ_linear, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, forgetâ_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forgetâ_eq
|
inhabited' đ | CompOp | â |
instCategory đ | CompOp | 582 mathmath: resCongr_inv, forget_Ρ, Rep.resCoindHomEquiv_symm_apply_hom, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForgetâContinuousMap, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.coe_linearization_obj_Ď, groupHomology.mapCyclesâ_comp_assoc, instIsEquivalenceFunctorSingleObjInverse, Rep.MonoidalClosed.linearHomEquiv_symm_hom, leftRegularTensorIso_inv_hom, neg_hom, groupHomology.mapâ_quotientGroupMk'_epi, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, groupHomology.mapShortComplexH2_id, inv_hom_hom_assoc, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, sum_hom, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.cocyclesMap_id_comp_assoc, Representation.repOfTprodIso_apply, Rep.coindResAdjunction_counit_app, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, ContinuousCohomology.I_obj_V_carrier, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.mapCyclesâ_comp_apply, groupHomology.mapShortComplexH1_zero, groupHomology.cyclesMap_id_comp, Rep.indFunctor_obj, groupHomology.mapShortComplexH2_zero, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget, Rep.indCoindNatIso_hom_app, groupHomology.chainsMap_id, diagonalSuccIsoTensorDiagonal_inv_hom, Rep.coe_res_obj_Ď, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Rep.barComplex.d_def, CategoryTheory.Functor.mapAction_δ_hom, Functor.mapActionPreservesLimitsOfShapeOfPreserves, Rep.diagonalHomEquiv_symm_apply, tensorObj_V, Rep.coindFunctor_map, functorCategoryEquivalence_inverse, instHasLimits, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, FunctorCategoryEquivalence.counitIso_inv_app_app, functorCategoryEquivalence_unitIso, Rep.instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, Rep.instIsRightAdjointCoindFunctor, groupHomology.mapCyclesâ_comp_assoc, leftUnitor_inv_hom, comp_hom, Rep.instIsTrivialObjModuleCatTrivialFunctor, instHasFiniteProducts, groupHomology.H0Ď_comp_map, Rep.coinvariantsAdjunction_counit_app, rightDual_Ď, groupHomology.map_id, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, instHasFiniteCoproducts, groupCohomology.cochainsMap_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Rep.linearization_single, whiskerRight_hom, groupHomology.coresNatTrans_app, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.congr, CategoryTheory.Functor.mapActionComp_hom, FunctorCategoryEquivalence.functor_obj_obj, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.standardComplex.d_eq, instReflectsLimitsOfShapeForget, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, groupHomology.Ď_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, Rep.trivial_projective_of_subsingleton, groupHomology.H1CoresCoinfOfTrivial_Xâ, Rep.homEquiv_apply_hom, groupCohomology.mapShortComplexH2_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyĎOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocyclesâ_comp_i_apply, Functor.mapActionPreservesLimit_of_preserves, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, Rep.norm_comm_apply, forgetâ_preservesZeroMorphisms, smul_hom, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, Rep.indCoindIso_inv_hom_hom, Rep.free_projective, groupHomology.dââ_comp_coinvariantsMk_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, forget_preservesZeroMorphisms, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.mapCyclesâ_id_comp_assoc, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, groupHomology.mapCyclesâ_comp, groupHomology.map_comp, FunctorCategoryEquivalence.unitIso_inv_app_hom, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, CategoryTheory.Functor.mapActionComp_inv, FunctorCategoryEquivalence.functor_map_app, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.coe_linearization_obj, Rep.instIsRightAdjointModuleCatInvariantsFunctor, groupCohomology.map_comp, groupHomology.map_id_comp, ContinuousCohomology.I_obj_Ď_apply, Rep.coinvariantsTensorIndIso_inv, groupHomology.functor_obj, instPreservesColimitForgetOfHasColimitComp, FunctorCategoryEquivalence.functor_δ, Rep.standardComplex.ÎľToSingleâ_comp_eq, ContAction.resEquiv_inverse, Rep.coindVEquiv_symm_apply_coe, Rep.homEquiv_def, Rep.indCoindIso_hom_hom_hom, hom_inv_hom, CategoryTheory.PreGaloisCategory.instFaithfulActionFintypeCatAutFunctorFunctorToAction, groupHomology.H1CoresCoinf_Xâ, Rep.ofModuleMonoidAlgebra_obj_coe, CategoryTheory.FintypeCat.instMonoActionFintypeCatImageComplementIncl, Rep.FiniteCyclicGroup.groupCohomologyĎOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_assoc, groupCohomology.infNatTrans_app, ContinuousCohomology.instLinearActionTopModuleCatInvariants, Rep.invariantsAdjunction_unit_app, groupHomology.mapCyclesâ_id_comp, Rep.diagonal_succ_projective, groupHomology.cyclesMap_comp_assoc, Rep.instIsLeftAdjointActionModuleCatRes, Functor.mapActionPreservesColimit_of_preserves, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, isIso_of_hom_isIso, groupHomology.chainsMap_f_single, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, mkIso_hom_hom, preservesColimits_forget, Rep.instProjective, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv, CategoryTheory.PreGaloisCategory.functorToContAction_map, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, Rep.barResolution_complex, CategoryTheory.Equivalence.mapAction_functor, resId_inv_app_hom, groupCohomology.cochainsMap_zero, Rep.FiniteCyclicGroup.groupCohomologyĎEven_eq_zero_iff, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, ContinuousCohomology.I_obj_V_isModule, CategoryTheory.PreGaloisCategory.instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, Rep.coindResAdjunction_unit_app, instIsIsoHomInv, groupHomology.mapCyclesâ_id_comp_apply, tensorUnit_Ď, groupCohomology.cochainsMap_id_comp, functorCategoryEquivalence_functor, groupCohomology.map_id, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, groupCohomology.mapShortComplexH2_comp, Functor.instPreservesFiniteLimitsMapActionOfHasFiniteLimits, CategoryTheory.PreGaloisCategory.exists_lift_of_continuous, CategoryTheory.Functor.mapAction_Ρ_hom, groupCohomology.cochainsMap_comp_assoc, instPreservesFiniteLimitsForgetOfHasFiniteLimits, Rep.indResAdjunction_counit_app_hom_hom, CategoryTheory.Functor.mapAction_obj_Ď_apply, FintypeCat.toEndHom_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.mapCyclesâ_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyĎEven_eq_iff, groupHomology.mapCyclesâ_comp, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.coinvariantsFunctor_hom_ext_iff, ContinuousCohomology.instAdditiveActionTopModuleCatInvariants, nsmul_hom, instFaithfulForget, classifyingSpaceUniversalCover_map, diagonalSuccIsoTensorTrivial_inv_hom_apply, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.coindMap'_hom, preservesLimitsOfShape_of_preserves, CategoryTheory.PreGaloisCategory.exists_lift_of_mono_of_isConnected, CategoryTheory.Functor.mapAction_linear, Rep.normNatTrans_app, groupHomology.H0Ď_comp_map_assoc, CategoryTheory.FintypeCat.instGaloisCategoryActionFintypeCat, instIsEquivalenceFunctorSingleObjFunctor, res_additive, groupHomology.Ď_comp_H0Iso_hom_apply, groupCohomology.H1InfRes_Xâ, Rep.applyAsHom_comm_assoc, Rep.instEpiModuleCatAppActionCoinvariantsMk, Rep.freeLiftLEquiv_apply, groupHomology.chainsFunctor_obj, Rep.instEnoughProjectives, groupCohomology.functor_obj, groupCohomology.cocyclesMap_comp, forget_δ, ContinuousCohomology.MultiInd.d_comp_d_assoc, FunctorCategoryEquivalence.inverse_obj_Ď_apply, hasLimitsOfShape, ContAction.res_obj_obj, id_hom, Rep.ihom_obj_Ď_apply, sub_hom, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, hasColimitsOfShape, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.finsuppTensorRight_hom_hom, groupCohomology.resNatTrans_app, preservesLimits_forget, CategoryTheory.Functor.mapAction_Îľ_hom, CategoryTheory.Functor.mapAction_obj_V, groupCohomology.mapShortComplexH2_zero, Rep.tensor_Ď, Rep.resIndAdjunction_homEquiv_apply, groupHomology.dââ_comp_coinvariantsMk, instPreservesLimitForgetOfHasLimitComp, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_Ρ_hom_apply, res_obj_V, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, Rep.leftRegularHomEquiv_symm_apply, forget_obj, Rep.quotientToCoinvariantsFunctor_map_hom, groupCohomology.mapShortComplexH1_id, Rep.coinvariantsShortComplex_g, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, Rep.Tor_map, Rep.ofModuleMonoidAlgebra_obj_Ď, rightDual_v, Rep.coinvariantsShortComplex_f, Rep.resIndAdjunction_counit_app, ContAction.resComp_hom, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, CategoryTheory.Functor.mapAction_preadditive, leftRegularTensorIso_hom_hom, preservesColimitsOfSize_of_preserves, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, Rep.instIsLeftAdjointModuleCatCoinvariantsFunctor, ContinuousCohomology.I_map_hom, CategoryTheory.Functor.mapAction_Îź_hom, Representation.coind'_apply_apply, Rep.diagonalOneIsoLeftRegular_inv_hom, FintypeCat.quotientToEndHom_mk, CategoryTheory.Functor.instFullActionMapActionOfFaithful, forget_additive, groupHomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCyclesâ_id_comp_assoc, Rep.coindIso_inv_hom_hom, zero_hom, groupHomology.mapShortComplexH2_comp, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.mapCyclesâ_id_comp, Rep.trivialFunctor_obj_V, Functor.instPreservesFiniteColimitsMapActionOfHasFiniteColimits, instPreservesFiniteColimitsForgetOfHasFiniteColimits, ContAction.resEquiv_functor, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, res_map_hom, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_Ď, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, instIsIsoHomHom, Rep.invariantsAdjunction_counit_app_hom, groupHomology.cyclesMap_comp_cyclesIsoâ_hom, groupCohomology.cochainsMap_f, Rep.coind'_ext_iff, instReflectsColimitsForget, groupHomology.chainsMap_comp, CategoryTheory.PreGaloisCategory.functorToAction_map, Rep.instLinearModuleCatInvariantsFunctor, instReflectsColimitsOfShapeForget, Rep.FiniteCyclicGroup.groupHomologyĎEven_eq_zero_iff, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, groupCohomology.map_id_comp_assoc, Rep.linearizationTrivialIso_inv_hom, Rep.isZero_Tor_succ_of_projective, groupHomology.chainsMap_f_0_comp_chainsIsoâ_assoc, Rep.quotientToInvariantsFunctor_obj_V, instPreservesLimitsOfShapeForgetOfHasLimitsOfShape, add_hom, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.congr, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, Rep.applyAsHom_comm, instHasFiniteColimits, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, CategoryTheory.Functor.mapActionCongr_inv, groupCohomology.H1InfRes_g, Rep.standardComplex.d_comp_Îľ, Rep.finsuppTensorRight_inv_hom, CategoryTheory.PreGaloisCategory.instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, Rep.indCoindNatIso_inv_app, functorCategoryEquivalence_counitIso, groupCohomology.mapShortComplexH1_id_comp, groupCohomology.cocyclesMap_comp_assoc, forget_Îľ, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, FunctorCategoryEquivalence.inverse_obj_V, resComp_inv_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, Rep.trivialFunctor_map_hom, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_assoc, Rep.FiniteCyclicGroup.groupCohomologyĎEven_eq_iff, FunctorCategoryEquivalence.unitIso_hom_app_hom, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv, groupHomology.mapShortComplexH1_id, groupCohomology.map_id_comp, hom_inv_hom_assoc, Rep.ihom_map_hom, tensorHom_hom, inv_hom_hom, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, associator_hom_hom, res_obj_Ď, CategoryTheory.PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Functor.preservesLimitsOfSize_of_preserves, Rep.unit_iso_comm, full_res, Rep.leftRegularHomEquiv_symm_single, instReflectsLimitsForget, inhomogeneousCochains.d_eq, CategoryTheory.PreGaloisCategory.has_decomp_quotients, Rep.FiniteCyclicGroup.resolution_complex, CategoryTheory.Functor.mapActionCongr_hom, groupHomology.chainsFunctor_map, Rep.leftRegularTensorTrivialIsoFree_inv_hom, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, groupHomology.chainsMap_f_hom, mkIso_inv_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.H1CoresCoinfOfTrivial_f, Rep.coindFunctor'_obj, FunctorCategoryEquivalence.inverse_map_hom, Rep.linearization_δ_hom, groupHomology.functor_map, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ, whiskerLeft_hom, groupCohomology.mapCocyclesâ_comp_i_apply, groupHomology.mapCyclesâ_id_comp_apply, Rep.standardComplex.instQuasiIsoNatÎľToSingleâ, zsmul_hom, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, Rep.standardComplex.x_projective, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, CategoryTheory.PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, preservesLimitsOfSize_of_preserves, Rep.instPreservesEpimorphismsSubtypeMemSubgroupCoindFunctorSubtype, Rep.FiniteCyclicGroup.resolution_quasiIso, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, groupCohomology.H1Map_id, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, Rep.finsuppTensorLeft_hom_hom, Rep.indFunctor_map, groupHomology.H1CoresCoinfOfTrivial_g, Rep.FiniteCyclicGroup.groupHomologyĎOdd_eq_iff, FunctorCategoryEquivalence.counitIso_hom_app_app, groupHomology.Ď_comp_H0Iso_hom, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.mapShortComplexH1_zero, ContinuousCohomology.instLinearActionTopModuleCatI, groupCohomology.mapShortComplexH1_comp_assoc, Rep.coinvariantsTensorMk_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap, tensorUnit_V, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.H0Ď_comp_H0Iso_hom, Rep.coinvariantsShortComplex_Xâ, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, instMonoidalPreadditive, FDRep.forgetâ_Ď, Rep.invariantsFunctor_map_hom, groupHomology.map_id_comp_H0Iso_hom, FunctorCategoryEquivalence.functor_Îź, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.cocyclesMap_id, Rep.instIsRightAdjointActionModuleCatRes, tensor_Ď, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, Rep.norm_comm_assoc, groupCohomology.mapShortComplexH2_id_comp, ContinuousCohomology.MultiInd.d_comp_d, Rep.resIndAdjunction_unit_app, resEquiv_inverse, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Functor.preservesColimitsOfSize_of_preserves, Rep.ihom_coev_app_hom, β_inv_hom, Rep.leftRegularHomEquiv_apply, Rep.leftRegular_projective, groupHomology.chainsMap_zero, forget_linear, CategoryTheory.PreGaloisCategory.exists_lift_of_mono, diagonalSuccIsoTensorDiagonal_hom_hom, resId_hom_app_hom, instHasColimits, groupHomology.mapShortComplexH2_id_comp, rightUnitor_hom_hom, forget_Îź, diagonalSuccIsoTensorTrivial_hom_hom_apply, leftDual_v, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, groupHomology.mapCyclesâ_comp_i_apply, isContinuous_def, CategoryTheory.Functor.mapAction_map_hom, Functor.mapActionPreservesColimitsOfShapeOfPreserves, groupCohomology.cocyclesMap_id_comp, Rep.res_obj_Ď, associator_inv_hom, resEquiv_functor, groupHomology.shortComplexH0_g, Rep.ihom_obj_V_isModule, groupCohomology.mapShortComplexH2_id, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftDual_Ď, instFaithfulRes, Rep.diagonalHomEquiv_apply, functorCategoryEquivalence_linear, Rep.coinvariantsAdjunction_unit_app_hom, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, instReflectsLimitForget, Rep.epi_iff_surjective, groupCohomology.cochainsFunctor_map, groupHomology.dââ_comp_coinvariantsMk_assoc, CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.coinvariantsShortComplex_Xâ, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, functorCategoryEquivalence_preservesZeroMorphisms, groupHomology.H0Ď_comp_H0Iso_hom_assoc, Iso.conj_Ď, groupHomology.cyclesMap_comp, preservesColimit_of_preserves, rightUnitor_inv_hom, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_Ďâ, res_linear, instPreservesColimitsOfShapeForgetOfHasColimitsOfShape, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_assoc, groupHomology.lsingle_comp_chainsMap_f_assoc, Rep.linearizationTrivialIso_hom_hom, Rep.instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, ContinuousCohomology.MultiInd.d_succ, Rep.coinvariantsAdjunction_homEquiv_apply_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.ihom_obj_Ď, instMonoidalLinear, resComp_hom_app_hom, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetâHomSubtypeHomCarrierV, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, functorCategoryEquivalence_additive, preservesColimitsOfShape_of_preserves, Rep.instIsLeftAdjointIndFunctor, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, Representation.linHom.invariantsEquivRepHom_apply_hom, groupHomology.cyclesMap_id, Rep.instAdditiveModuleCatInvariantsFunctor, forgetâ_linear, isIso_hom_mk, FunctorCategoryEquivalence.functor_obj_map, CategoryTheory.PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, Rep.coindFunctor'_map, Rep.coinvariantsFunctor_map_hom, Rep.coindFunctor_obj, Rep.linearization_map_hom_single, comp_hom_assoc, groupCohomology.map_id_comp_H0Iso_hom_assoc, Rep.ihom_obj_Ď_def, Rep.ihom_obj_V_carrier, ContinuousCohomology.const_app_hom, ContAction.resComp_inv, instHasFiniteLimits, Rep.coinvariantsShortComplex_Xâ, Rep.coindIso_hom_hom_hom, Rep.leftRegularTensorTrivialIsoFree_hom_hom, ContAction.res_map, groupHomology.H0Ď_comp_H0Iso_hom_apply, Rep.mono_iff_injective, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, groupCohomology.functor_map, Rep.linearization_Îľ_hom, CategoryTheory.Equivalence.mapAction_inverse, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, Rep.Tor_obj, Rep.coinvariantsShortComplex_shortExact, resCongr_hom, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, Rep.FiniteCyclicGroup.resolution_Ď, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.H0Ď_comp_map_apply, groupCohomology.mapShortComplexH1_Ďâ, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.FiniteCyclicGroup.resolution.Ď_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, groupCohomology.cochainsFunctor_obj, Rep.linearization_map_hom, β_hom_hom, CategoryTheory.FintypeCat.Action.isConnected_of_transitive, instReflectsColimitForget, Rep.FiniteCyclicGroup.groupCohomologyĎOdd_eq_zero_iff, CategoryTheory.PreGaloisCategory.functorToAction_full, leftUnitor_hom_hom, FunctorCategoryEquivalence.functor_Ρ, Rep.indResHomEquiv_symm_apply_hom, ContinuousCohomology.instAdditiveActionTopModuleCatI, forgetâ_additive, forget_map, groupHomology.chainsMap_f_0_comp_chainsIsoâ, classifyingSpaceUniversalCover_obj, FintypeCat.toEndHom_trivial_of_mem, CategoryTheory.Functor.instFaithfulActionMapAction, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Rep.norm_comm, FunctorCategoryEquivalence.functor_Îľ, Rep.linearization_Îź_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, CategoryTheory.PreGaloisCategory.instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, preservesLimit_of_preserves, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupCohomology.map_comp_assoc, groupCohomology.cochainsMap_id, Rep.instInjective, CategoryTheory.PreGaloisCategory.functorToAction_comp_forgetâ_eq
|
instConcreteCategoryHomSubtypeV đ | CompOp | 19 mathmath: CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, Rep.norm_comm_apply, forgetâ_preservesZeroMorphisms, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.ÎľToSingleâ_comp_eq, Rep.applyAsHom_comm_apply, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, FDRep.forgetâ_Ď, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, isContinuous_def, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetâHomSubtypeHomCarrierV, forgetâ_linear, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, forgetâ_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forgetâ_eq
|
instFunLikeHomSubtypeV đ | CompOp | 20 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForgetâContinuousMap, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, Rep.norm_comm_apply, forgetâ_preservesZeroMorphisms, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.ÎľToSingleâ_comp_eq, Rep.applyAsHom_comm_apply, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.standardComplex.quasiIso_forgetâ_ÎľToSingleâ, FDRep.forgetâ_Ď, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, isContinuous_def, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetâHomSubtypeHomCarrierV, forgetâ_linear, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, forgetâ_additive, CategoryTheory.PreGaloisCategory.functorToAction_comp_forgetâ_eq
|
instInhabitedAddCommGrpCat đ | CompOp | â |
mkIso đ | CompOp | 10 mathmath: resCongr_inv, CategoryTheory.Functor.mapContActionCongr_inv, CategoryTheory.Functor.mapContActionCongr_hom, mkIso_hom_hom, ContAction.resCongr_hom, CategoryTheory.Functor.mapActionCongr_inv, CategoryTheory.Functor.mapActionCongr_hom, mkIso_inv_hom, ContAction.resCongr_inv, resCongr_hom
|
res đ | CompOp | 161 mathmath: resCongr_inv, Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, groupHomology.mapCyclesâ_comp_assoc, groupHomology.mapâ_quotientGroupMk'_epi, groupCohomology.cocyclesMap_id_comp_assoc, Rep.coindResAdjunction_counit_app, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.mapCyclesâ_comp_apply, groupHomology.mapShortComplexH1_zero, groupHomology.cyclesMap_id_comp, groupHomology.mapShortComplexH2_zero, Rep.coe_res_obj_Ď, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupHomology.mapCyclesâ_comp_assoc, groupHomology.H0Ď_comp_map, groupCohomology.cochainsMap_comp, groupHomology.coresNatTrans_app, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.congr, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.H1CoresCoinfOfTrivial_Xâ, groupCohomology.mapShortComplexH2_comp_assoc, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.mapCyclesâ_comp, groupHomology.map_comp, groupCohomology.map_comp, groupHomology.map_id_comp, Rep.coinvariantsTensorIndIso_inv, Rep.coindVEquiv_symm_apply_coe, groupHomology.H1CoresCoinf_Xâ, groupHomology.mapCyclesâ_id_comp, groupHomology.cyclesMap_comp_assoc, Rep.instIsLeftAdjointActionModuleCatRes, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, groupHomology.chainsMap_f_single, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, resId_inv_app_hom, groupCohomology.cochainsMap_zero, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, Rep.coindResAdjunction_unit_app, groupHomology.mapCyclesâ_id_comp_apply, groupCohomology.cochainsMap_id_comp, groupCohomology.mapShortComplexH2_comp, groupCohomology.cochainsMap_comp_assoc, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.mapCyclesâ_comp_i_apply, groupHomology.mapCyclesâ_comp, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.coindMap'_hom, groupHomology.H0Ď_comp_map_assoc, res_additive, groupCohomology.H1InfRes_Xâ, groupCohomology.cocyclesMap_comp, ContAction.res_obj_obj, groupCohomology.resNatTrans_app, groupCohomology.mapShortComplexH2_zero, Rep.resIndAdjunction_homEquiv_apply, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, res_obj_V, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, Rep.quotientToCoinvariantsFunctor_map_hom, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, Rep.resIndAdjunction_counit_app, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, Representation.coind'_apply_apply, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCyclesâ_id_comp_assoc, Rep.coindIso_inv_hom_hom, groupHomology.mapShortComplexH2_comp, groupHomology.mapCyclesâ_id_comp, res_map_hom, groupHomology.lsingle_comp_chainsMap_f, groupHomology.cyclesMap_comp_cyclesIsoâ_hom, groupCohomology.cochainsMap_f, Rep.coind'_ext_iff, groupHomology.chainsMap_comp, groupCohomology.map_id_comp_assoc, groupHomology.chainsMap_f_0_comp_chainsIsoâ_assoc, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.congr, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, groupCohomology.H1InfRes_g, groupCohomology.mapShortComplexH1_id_comp, groupCohomology.cocyclesMap_comp_assoc, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, resComp_inv_app_hom, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_assoc, groupCohomology.map_id_comp, res_obj_Ď, full_res, groupHomology.chainsMap_f_hom, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.H1CoresCoinfOfTrivial_f, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ, groupCohomology.mapCocyclesâ_comp_i_apply, groupHomology.mapCyclesâ_id_comp_apply, groupCohomology.cochainsMap_f_hom, groupHomology.H1CoresCoinfOfTrivial_g, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.mapShortComplexH1_zero, groupCohomology.mapShortComplexH1_comp_assoc, groupHomology.cyclesIsoâ_inv_comp_cyclesMap, Rep.instIsRightAdjointActionModuleCatRes, groupCohomology.mapShortComplexH2_id_comp, Rep.resIndAdjunction_unit_app, resEquiv_inverse, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, groupHomology.chainsMap_zero, resId_hom_app_hom, groupHomology.mapShortComplexH2_id_comp, groupHomology.mapCyclesâ_comp_i_apply, groupCohomology.cocyclesMap_id_comp, Rep.res_obj_Ď, resEquiv_functor, instFaithfulRes, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupHomology.cyclesMap_comp, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_Ďâ, res_linear, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_assoc, groupHomology.lsingle_comp_chainsMap_f_assoc, groupHomology.H1CoresCoinf_f, resComp_hom_app_hom, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_assoc, groupCohomology.map_H0Iso_hom_f_assoc, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.coindIso_hom_hom_hom, ContAction.res_map, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, resCongr_hom, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.H0Ď_comp_map_apply, groupCohomology.mapShortComplexH1_Ďâ, Rep.indResHomEquiv_symm_apply_hom, groupHomology.chainsMap_f_0_comp_chainsIsoâ, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupCohomology.map_comp_assoc
|
resComp đ | CompOp | 2 mathmath: resComp_inv_app_hom, resComp_hom_app_hom
|
resCongr đ | CompOp | 2 mathmath: resCongr_inv, resCongr_hom
|
resEquiv đ | CompOp | 2 mathmath: resEquiv_inverse, resEquiv_functor
|
resId đ | CompOp | 2 mathmath: resId_inv_app_hom, resId_hom_app_hom
|
trivial đ | CompOp | 6 mathmath: leftRegularTensorIso_inv_hom, diagonalSuccIsoTensorTrivial_inv_hom_apply, leftRegularTensorIso_hom_hom, trivial_Ď, diagonalSuccIsoTensorTrivial_hom_hom_apply, trivial_V
|
Ď đ | CompOp | 40 mathmath: Rep.coe_linearization_obj_Ď, leftRegularTensorIso_inv_hom, ofMulAction_apply, FDRep.endRingEquiv_symm_comp_Ď, rightDual_Ď, Rep.linearization_single, Rep.Ď_hom, FunctorCategoryEquivalence.functor_map_app, ContinuousCohomology.I_obj_Ď_apply, ContinuousCohomology.Iobj_Ď_apply, tensorUnit_Ď, FDRep.hom_hom_action_Ď, CategoryTheory.Functor.mapAction_obj_Ď_apply, FunctorCategoryEquivalence.inverse_obj_Ď_apply, leftRegularTensorIso_hom_hom, ofMulAction_Ď, res_map_hom, Rep.linearization_obj_Ď, Ď_self_inv_apply, Ď_one, ĎAut_apply_hom, trivial_Ď, Hom.comm_assoc, res_obj_Ď, Rep.ofHom_Ď, Rep.Action_Ď_eq_Ď, tensor_Ď, FDRep.of_Ď, isContinuous_def, CategoryTheory.Functor.mapAction_map_hom, leftDual_Ď, Iso.conj_Ď, Rep.ihom_obj_Ď, FunctorCategoryEquivalence.functor_obj_map, ĎAut_apply_inv, Hom.comm, Ď_inv_self_apply, FDRep.hom_action_Ď, FDRep.endRingEquiv_comp_Ď, FintypeCat.ofMulAction_apply
|
ĎAut đ | CompOp | 2 mathmath: ĎAut_apply_hom, ĎAut_apply_inv
|