Documentation Verification Report

Concrete

πŸ“ Source: Mathlib/CategoryTheory/Action/Concrete.lean

Statistics

MetricCount
DefinitionsinstMulActionCarrierOf, ofMulAction, quotientToEndHom, quotientToQuotientOfLE, toEndHom, Β«term_⧸ₐ_Β», diagonal, diagonalOneIsoLeftRegular, instMulAction, instMulActionCarrierVFintypeCat, leftRegular, ofMulAction, ofMulActionLimitCone
13
TheoremsofMulAction_apply, quotientToEndHom_mk, quotientToQuotientOfLE_hom_mk, toEndHom_apply, toEndHom_trivial_of_mem, ofMulAction_V, ofMulAction_apply, ofMulAction_ρ, ρ_inv_self_apply, ρ_self_inv_apply
10
Total23

Action

Definitions

NameCategoryTheorems
diagonal πŸ“–CompOp
4 mathmath: diagonalSuccIsoTensorDiagonal_inv_hom, diagonalSuccIsoTensorTrivial_inv_hom_apply, diagonalSuccIsoTensorDiagonal_hom_hom, diagonalSuccIsoTensorTrivial_hom_hom_apply
diagonalOneIsoLeftRegular πŸ“–CompOpβ€”
instMulAction πŸ“–CompOpβ€”
instMulActionCarrierVFintypeCat πŸ“–CompOp
2 mathmath: CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive
leftRegular πŸ“–CompOp
6 mathmath: leftRegularTensorIso_inv_hom, diagonalSuccIsoTensorDiagonal_inv_hom, diagonalSuccIsoTensorTrivial_inv_hom_apply, leftRegularTensorIso_hom_hom, diagonalSuccIsoTensorDiagonal_hom_hom, diagonalSuccIsoTensorTrivial_hom_hom_apply
ofMulAction πŸ“–CompOp
5 mathmath: ofMulAction_apply, classifyingSpaceUniversalCover_map, ofMulAction_ρ, ofMulAction_V, classifyingSpaceUniversalCover_obj
ofMulActionLimitCone πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ofMulAction_V πŸ“–mathematicalβ€”V
CategoryTheory.types
ofMulAction
β€”β€”
ofMulAction_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
V
ofMulAction
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”β€”
ofMulAction_ρ πŸ“–mathematical—ρ
CategoryTheory.types
ofMulAction
MulAction.toEndHom
β€”β€”
ρ_inv_self_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
inv_mul_cancel
map_one
MonoidHomClass.toOneHomClass
ρ_self_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_inv_cancel
map_one
MonoidHomClass.toOneHomClass

Action.FintypeCat

Definitions

NameCategoryTheorems
instMulActionCarrierOf πŸ“–CompOpβ€”
ofMulAction πŸ“–CompOp
8 mathmath: toEndHom_apply, quotientToEndHom_mk, CategoryTheory.PreGaloisCategory.has_decomp_quotients, quotientToQuotientOfLE_hom_mk, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, CategoryTheory.FintypeCat.Action.isConnected_of_transitive, toEndHom_trivial_of_mem, ofMulAction_apply
quotientToEndHom πŸ“–CompOp
1 mathmath: quotientToEndHom_mk
quotientToQuotientOfLE πŸ“–CompOp
1 mathmath: quotientToQuotientOfLE_hom_mk
toEndHom πŸ“–CompOp
2 mathmath: toEndHom_apply, toEndHom_trivial_of_mem
Β«term_⧸ₐ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ofMulAction_apply πŸ“–mathematicalβ€”DFunLike.coe
Action.V
FintypeCat
FintypeCat.instCategory
ofMulAction
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
MonoidHom
CategoryTheory.End
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”β€”
quotientToEndHom_mk πŸ“–mathematicalβ€”DFunLike.coe
Action.V
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ofMulAction
FintypeCat.of
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
Action.Hom.hom
MonoidHom
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subgroupOf
CategoryTheory.End
Action
Action.instCategory
MulOneClass.toMulOne
Monoid.toMulOneClass
QuotientGroup.Quotient.group
Subgroup.normal_subgroupOf
CategoryTheory.End.monoid
MonoidHom.instFunLike
quotientToEndHom
QuotientGroup.leftRel
MulOne.toMul
Subgroup.inv
β€”MulAction.left_quotientAction
Subgroup.normal_subgroupOf
quotientToQuotientOfLE_hom_mk πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
DFunLike.coe
Action.V
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ofMulAction
FintypeCat.of
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
Action.Hom.hom
quotientToQuotientOfLE
QuotientGroup.leftRel
β€”MulAction.left_quotientAction
toEndHom_apply πŸ“–mathematicalβ€”DFunLike.coe
Action.V
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ofMulAction
FintypeCat.of
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
Action.Hom.hom
MonoidHom
CategoryTheory.End
Action
Action.instCategory
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
toEndHom
QuotientGroup.leftRel
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”MulAction.left_quotientAction
toEndHom_trivial_of_mem πŸ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
DFunLike.coe
MonoidHom
CategoryTheory.End
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ofMulAction
FintypeCat.of
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
toEndHom
CategoryTheory.CategoryStruct.id
β€”Action.hom_ext
MulAction.left_quotientAction
FintypeCat.hom_ext
QuotientGroup.leftRel_apply
mul_inv_rev
inv_inv
inv_mul_cancel_right

---

← Back to Index