Documentation Verification Report

Monoidal

📁 Source: Mathlib/CategoryTheory/Action/Monoidal.lean

Statistics

MetricCount
DefinitionsfunctorMonoidal, inverseMonoidal, diagonalSuccIsoTensorDiagonal, diagonalSuccIsoTensorTrivial, functorCategoryEquivalenceFunctorMonoidal, functorCategoryEquivalenceInverseMonoidal, instBraidedCategory, instBraidedForget, instLeftRigidCategory, instLeftRigidCategoryFunctorSingleObj, instMonoidalCategory, instMonoidalForget, instRightRigidCategory, instRightRigidCategoryFunctorSingleObj, instRigidCategory, instRigidCategoryFunctorSingleObj, instSymmetricCategory, leftRegularTensorIso, tensorUnitIso, instLaxMonoidalActionMapAction, instMonoidalActionMapAction, instOplaxMonoidalActionMapAction
22
Theoremsfunctor_δ, functor_ε, functor_η, functor_μ, associator_hom_hom, associator_inv_hom, diagonalSuccIsoTensorDiagonal_hom_hom, diagonalSuccIsoTensorDiagonal_inv_hom, diagonalSuccIsoTensorTrivial_hom_hom_apply, diagonalSuccIsoTensorTrivial_inv_hom_apply, forget_δ, forget_ε, forget_η, forget_μ, instMonoidalLinear, instMonoidalPreadditive, leftDual_v, leftDual_ρ, leftRegularTensorIso_hom_hom, leftRegularTensorIso_inv_hom, leftUnitor_hom_hom, leftUnitor_inv_hom, rightDual_v, rightDual_ρ, rightUnitor_hom_hom, rightUnitor_inv_hom, tensorHom_hom, tensorObj_V, tensorUnit_V, tensorUnit_ρ, tensor_ρ, whiskerLeft_hom, whiskerRight_hom, β_hom_hom, β_inv_hom, mapAction_δ_hom, mapAction_ε_hom, mapAction_η_hom, mapAction_μ_hom
39
Total61

Action

Definitions

NameCategoryTheorems
diagonalSuccIsoTensorDiagonal 📖CompOp
2 mathmath: diagonalSuccIsoTensorDiagonal_inv_hom, diagonalSuccIsoTensorDiagonal_hom_hom
diagonalSuccIsoTensorTrivial 📖CompOp
2 mathmath: diagonalSuccIsoTensorTrivial_inv_hom_apply, diagonalSuccIsoTensorTrivial_hom_hom_apply
functorCategoryEquivalenceFunctorMonoidal 📖CompOp
functorCategoryEquivalenceInverseMonoidal 📖CompOp
instBraidedCategory 📖CompOp
2 mathmath: β_inv_hom, β_hom_hom
instBraidedForget 📖CompOp
instLeftRigidCategory 📖CompOp
2 mathmath: leftDual_v, leftDual_ρ
instLeftRigidCategoryFunctorSingleObj 📖CompOp
instMonoidalCategory 📖CompOp
81 mathmath: forget_η, Representation.repOfTprodIso_inv_apply, Rep.MonoidalClosed.linearHomEquiv_symm_hom, leftRegularTensorIso_inv_hom, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, FDRep.char_tensor, Representation.repOfTprodIso_apply, diagonalSuccIsoTensorDiagonal_inv_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.Functor.mapAction_δ_hom, tensorObj_V, TannakaDuality.FiniteGroup.forget_obj, leftUnitor_inv_hom, rightDual_ρ, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, whiskerRight_hom, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, Rep.homEquiv_apply_hom, Rep.ihom_ev_app_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, FunctorCategoryEquivalence.functor_δ, Rep.homEquiv_def, Rep.coinvariantsTensorFreeLEquiv_apply, tensorUnit_ρ, CategoryTheory.Functor.mapAction_η_hom, diagonalSuccIsoTensorTrivial_inv_hom_apply, forget_δ, Rep.finsuppTensorRight_hom_hom, CategoryTheory.Functor.mapAction_ε_hom, TannakaDuality.FiniteGroup.forget_map, Rep.tensor_ρ, Rep.linearization_η_hom_apply, rightDual_v, leftRegularTensorIso_hom_hom, CategoryTheory.Functor.mapAction_μ_hom, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Rep.finsuppTensorRight_inv_hom, forget_ε, tensorHom_hom, Rep.finsuppTensorLeft_inv_hom, associator_hom_hom, Rep.leftRegularTensorTrivialIsoFree_inv_hom, Rep.linearization_δ_hom, whiskerLeft_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.finsuppTensorLeft_hom_hom, Rep.coinvariantsTensorMk_apply, tensorUnit_V, Rep.homEquiv_symm_apply_hom, instMonoidalPreadditive, FunctorCategoryEquivalence.functor_μ, tensor_ρ, Rep.ihom_coev_app_hom, β_inv_hom, diagonalSuccIsoTensorDiagonal_hom_hom, rightUnitor_hom_hom, forget_μ, diagonalSuccIsoTensorTrivial_hom_hom_apply, leftDual_v, associator_inv_hom, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftDual_ρ, groupHomology.inhomogeneousChains.d_eq, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, rightUnitor_inv_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, instMonoidalLinear, Rep.ihom_obj_ρ_def, TannakaDuality.FiniteGroup.equivHom_surjective, Rep.leftRegularTensorTrivialIsoFree_hom_hom, TannakaDuality.FiniteGroup.equivHom_injective, FDRep.dualTensorIsoLinHom_hom_hom, Rep.linearization_ε_hom, β_hom_hom, TannakaDuality.FiniteGroup.equivHom_apply, leftUnitor_hom_hom, FunctorCategoryEquivalence.functor_η, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, FunctorCategoryEquivalence.functor_ε, Rep.linearization_μ_hom
instMonoidalForget 📖CompOp
4 mathmath: forget_η, forget_δ, forget_ε, forget_μ
instRightRigidCategory 📖CompOp
2 mathmath: rightDual_ρ, rightDual_v
instRightRigidCategoryFunctorSingleObj 📖CompOp
instRigidCategory 📖CompOp
instRigidCategoryFunctorSingleObj 📖CompOp
instSymmetricCategory 📖CompOp
leftRegularTensorIso 📖CompOp
2 mathmath: leftRegularTensorIso_inv_hom, leftRegularTensorIso_hom_hom
tensorUnitIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
instMonoidalCategory
V
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
associator_inv_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
instMonoidalCategory
V
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.comp_id
diagonalSuccIsoTensorDiagonal_hom_hom 📖mathematicalHom.hom
CategoryTheory.types
diagonal
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
leftRegular
CategoryTheory.Iso.hom
diagonalSuccIsoTensorDiagonal
DFunLike.coe
Equiv
V
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Fin.consEquiv
diagonalSuccIsoTensorDiagonal_inv_hom 📖mathematicalHom.hom
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
leftRegular
diagonal
CategoryTheory.Iso.inv
diagonalSuccIsoTensorDiagonal
DFunLike.coe
Equiv
V
EquivLike.toFunLike
Equiv.instEquivLike
Fin.consEquiv
diagonalSuccIsoTensorTrivial_hom_hom_apply 📖mathematicalHom.hom
CategoryTheory.types
DivInvMonoid.toMonoid
Group.toDivInvMonoid
diagonal
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
leftRegular
trivial
CategoryTheory.Iso.hom
diagonalSuccIsoTensorTrivial
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.MonoidalCategory.id_tensorHom
Fin.insertNthEquiv_zero
mkIso.congr_simp
Fin.cons_zero
Fin.cons_succ
diagonalSuccIsoTensorTrivial_inv_hom_apply 📖mathematicalHom.hom
CategoryTheory.types
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
leftRegular
trivial
diagonal
CategoryTheory.Iso.inv
diagonalSuccIsoTensorTrivial
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
Function.hasSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Fin.partialProd
Fin.isEmpty'
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.Category.assoc
rightUnitor_hom_hom
Fin.partialProd_zero
mul_one
Fin.insertNthEquiv_zero
mkIso.congr_simp
Fin.cons_zero
Fin.cons_succ
mul_assoc
Fin.partialProd_succ'
forget_δ 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
Action
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
forget_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
Action
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
forget_η 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.η
Action
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
forget_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
Action
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
instMonoidalLinear 📖mathematicalCategoryTheory.MonoidalLinear
Action
instCategory
instPreadditive
instLinear
instMonoidalCategory
instMonoidalPreadditive
instMonoidalPreadditive
hom_ext
CategoryTheory.MonoidalLinear.whiskerLeft_smul
CategoryTheory.MonoidalLinear.smul_whiskerRight
instMonoidalPreadditive 📖mathematicalCategoryTheory.MonoidalPreadditive
Action
instCategory
instPreadditive
instMonoidalCategory
hom_ext
CategoryTheory.MonoidalPreadditive.whiskerLeft_zero
CategoryTheory.MonoidalPreadditive.zero_whiskerRight
CategoryTheory.MonoidalPreadditive.whiskerLeft_add
CategoryTheory.MonoidalPreadditive.add_whiskerRight
leftDual_v 📖mathematicalV
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.HasLeftDual.leftDual
Action
instCategory
instMonoidalCategory
CategoryTheory.LeftRigidCategory.leftDual
instLeftRigidCategory
leftDual_ρ 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.HasLeftDual.leftDual
Action
instCategory
instMonoidalCategory
CategoryTheory.LeftRigidCategory.leftDual
instLeftRigidCategory
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
CategoryTheory.leftAdjointMate
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
CategoryTheory.SingleObj.inv_as_inv
leftRegularTensorIso_hom_hom 📖mathematicalHom.hom
CategoryTheory.types
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
leftRegular
trivial
V
CategoryTheory.Iso.hom
leftRegularTensorIso
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
leftRegularTensorIso_inv_hom 📖mathematicalHom.hom
CategoryTheory.types
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
leftRegular
trivial
V
CategoryTheory.Iso.inv
leftRegularTensorIso
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
leftUnitor_hom_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
instMonoidalCategory
V
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
leftUnitor_inv_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
instMonoidalCategory
V
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
rightDual_v 📖mathematicalV
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.HasRightDual.rightDual
Action
instCategory
instMonoidalCategory
CategoryTheory.RightRigidCategory.rightDual
instRightRigidCategory
rightDual_ρ 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.HasRightDual.rightDual
Action
instCategory
instMonoidalCategory
CategoryTheory.RightRigidCategory.rightDual
instRightRigidCategory
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
CategoryTheory.rightAdjointMate
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
CategoryTheory.SingleObj.inv_as_inv
rightUnitor_hom_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
instMonoidalCategory
V
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
rightUnitor_inv_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
instMonoidalCategory
V
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
tensorHom_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.tensorHom
instMonoidalCategory
V
tensorObj_V 📖mathematicalV
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
tensorUnit_V 📖mathematicalV
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
tensorUnit_ρ 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
Action
instCategory
instMonoidalCategory
CategoryTheory.CategoryStruct.id
tensor_ρ 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
V
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
Action
instCategory
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
whiskerLeft_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
instMonoidalCategory
V
whiskerRight_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
Action
instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
functorCategoryEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalCategoryStruct.whiskerRight
instMonoidalCategory
V
β_hom_hom 📖mathematicalHom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
instBraidedCategory
V
β_inv_hom 📖mathematicalHom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
instBraidedCategory
V

Action.FunctorCategoryEquivalence

Definitions

NameCategoryTheorems
functorMonoidal 📖CompOp
4 mathmath: functor_δ, functor_μ, functor_η, functor_ε
inverseMonoidal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
functor_δ 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
Action
Action.instCategory
Action.instMonoidalCategory
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidal
functor
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
functorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
functor_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
Action
Action.instCategory
Action.instMonoidalCategory
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidal
functor
CategoryTheory.Functor.Monoidal.toLaxMonoidal
functorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
functor_η 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.η
Action
Action.instCategory
Action.instMonoidalCategory
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidal
functor
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
functorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
functor_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
Action
Action.instCategory
Action.instMonoidalCategory
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidal
functor
CategoryTheory.Functor.Monoidal.toLaxMonoidal
functorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj

CategoryTheory.Functor

Definitions

NameCategoryTheorems
instLaxMonoidalActionMapAction 📖CompOp
2 mathmath: mapAction_ε_hom, mapAction_μ_hom
instMonoidalActionMapAction 📖CompOp
instOplaxMonoidalActionMapAction 📖CompOp
2 mathmath: mapAction_δ_hom, mapAction_η_hom

Theorems

NameKindAssumesProvesValidatesDepends On
mapAction_δ_hom 📖mathematicalAction.Hom.hom
obj
Action
Action.instCategory
mapAction
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
OplaxMonoidal.δ
instOplaxMonoidalActionMapAction
Action.V
mapAction_ε_hom 📖mathematicalAction.Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Action
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
obj
mapAction
LaxMonoidal.ε
instLaxMonoidalActionMapAction
mapAction_η_hom 📖mathematicalAction.Hom.hom
obj
Action
Action.instCategory
mapAction
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
OplaxMonoidal.η
instOplaxMonoidalActionMapAction
mapAction_μ_hom 📖mathematicalAction.Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
Action
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
obj
mapAction
LaxMonoidal.μ
instLaxMonoidalActionMapAction
Action.V

---

← Back to Index