| Name | Category | Theorems |
diagonalSuccIsoTensorDiagonal 📖 | CompOp | 2 mathmath: diagonalSuccIsoTensorDiagonal_inv_hom, diagonalSuccIsoTensorDiagonal_hom_hom
|
diagonalSuccIsoTensorTrivial 📖 | CompOp | 2 mathmath: diagonalSuccIsoTensorTrivial_inv_hom_apply, diagonalSuccIsoTensorTrivial_hom_hom_apply
|
functorCategoryEquivalenceFunctorMonoidal 📖 | CompOp | — |
functorCategoryEquivalenceInverseMonoidal 📖 | CompOp | — |
instBraidedCategory 📖 | CompOp | 2 mathmath: β_inv_hom, β_hom_hom
|
instBraidedForget 📖 | CompOp | — |
instLeftRigidCategory 📖 | CompOp | 2 mathmath: leftDual_v, leftDual_ρ
|
instLeftRigidCategoryFunctorSingleObj 📖 | CompOp | — |
instMonoidalCategory 📖 | CompOp | 81 mathmath: forget_η, Representation.repOfTprodIso_inv_apply, Rep.MonoidalClosed.linearHomEquiv_symm_hom, leftRegularTensorIso_inv_hom, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, FDRep.char_tensor, Representation.repOfTprodIso_apply, diagonalSuccIsoTensorDiagonal_inv_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.Functor.mapAction_δ_hom, tensorObj_V, TannakaDuality.FiniteGroup.forget_obj, leftUnitor_inv_hom, rightDual_ρ, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, whiskerRight_hom, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, Rep.homEquiv_apply_hom, Rep.ihom_ev_app_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, FunctorCategoryEquivalence.functor_δ, Rep.homEquiv_def, Rep.coinvariantsTensorFreeLEquiv_apply, tensorUnit_ρ, CategoryTheory.Functor.mapAction_η_hom, diagonalSuccIsoTensorTrivial_inv_hom_apply, forget_δ, Rep.finsuppTensorRight_hom_hom, CategoryTheory.Functor.mapAction_ε_hom, TannakaDuality.FiniteGroup.forget_map, Rep.tensor_ρ, Rep.linearization_η_hom_apply, rightDual_v, leftRegularTensorIso_hom_hom, CategoryTheory.Functor.mapAction_μ_hom, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Rep.finsuppTensorRight_inv_hom, forget_ε, tensorHom_hom, Rep.finsuppTensorLeft_inv_hom, associator_hom_hom, Rep.leftRegularTensorTrivialIsoFree_inv_hom, Rep.linearization_δ_hom, whiskerLeft_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.finsuppTensorLeft_hom_hom, Rep.coinvariantsTensorMk_apply, tensorUnit_V, Rep.homEquiv_symm_apply_hom, instMonoidalPreadditive, FunctorCategoryEquivalence.functor_μ, tensor_ρ, Rep.ihom_coev_app_hom, β_inv_hom, diagonalSuccIsoTensorDiagonal_hom_hom, rightUnitor_hom_hom, forget_μ, diagonalSuccIsoTensorTrivial_hom_hom_apply, leftDual_v, associator_inv_hom, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftDual_ρ, groupHomology.inhomogeneousChains.d_eq, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, rightUnitor_inv_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, instMonoidalLinear, Rep.ihom_obj_ρ_def, TannakaDuality.FiniteGroup.equivHom_surjective, Rep.leftRegularTensorTrivialIsoFree_hom_hom, TannakaDuality.FiniteGroup.equivHom_injective, FDRep.dualTensorIsoLinHom_hom_hom, Rep.linearization_ε_hom, β_hom_hom, TannakaDuality.FiniteGroup.equivHom_apply, leftUnitor_hom_hom, FunctorCategoryEquivalence.functor_η, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, FunctorCategoryEquivalence.functor_ε, Rep.linearization_μ_hom
|
instMonoidalForget 📖 | CompOp | 4 mathmath: forget_η, forget_δ, forget_ε, forget_μ
|
instRightRigidCategory 📖 | CompOp | 2 mathmath: rightDual_ρ, rightDual_v
|
instRightRigidCategoryFunctorSingleObj 📖 | CompOp | — |
instRigidCategory 📖 | CompOp | — |
instRigidCategoryFunctorSingleObj 📖 | CompOp | — |
instSymmetricCategory 📖 | CompOp | — |
leftRegularTensorIso 📖 | CompOp | 2 mathmath: leftRegularTensorIso_inv_hom, leftRegularTensorIso_hom_hom
|
tensorUnitIso 📖 | CompOp | — |