Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Adhesive/Basic.lean

Statistics

MetricCount
DefinitionsIsVanKampen
1
TheoremshasPullback_of_mono_left, hasPushout_of_mono_left, isPullback_of_isPushout_of_mono_left, isPullback_of_isPushout_of_mono_right, mono_of_isPushout_of_mono_left, mono_of_isPushout_of_mono_right, toRegularMonoCategory, van_kampen, van_kampen', flip, isPullback_of_mono_left, isPullback_of_mono_right, mono_of_mono_left, mono_of_mono_right, isVanKampen_iff, isVanKampen_inl, adhesive, adhesive_functor, adhesive_of_preserves_and_reflects, adhesive_of_preserves_and_reflects_isomorphism, adhesive_of_reflective, is_coprod_iff_isPushout
22
Total23

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
adhesive_functor 📖mathematicalAdhesive
Functor
Functor.category
Limits.functorCategoryHasLimit
Limits.hasLimitOfHasLimitsOfShape
Limits.functorCategoryHasColimit
Limits.hasColimitOfHasColimitsOfShape
CommSq.w
IsPushout.toCommSq
IsPushout.isVanKampen_iff
isVanKampenColimit_of_evaluation
IsVanKampenColimit.precompose_isIso_iff
Iso.isIso_inv
IsVanKampenColimit.of_iso
NatTrans.naturality
IsPushout.map
Limits.evaluation_preservesColimit
Adhesive.van_kampen
Functor.map_mono
preservesMonomorphisms_of_preservesLimitsOfShape
Limits.evaluation_preservesLimitsOfShape
adhesive_of_preserves_and_reflects 📖mathematicalLimits.HasPullback
Limits.HasPushout
AdhesiveCommSq.w
IsPushout.toCommSq
IsPushout.isVanKampen_iff
IsVanKampenColimit.of_mapCocone
Limits.PreservesLimitsOfShape.preservesLimit
IsVanKampenColimit.precompose_isIso_iff
Iso.isIso_inv
IsVanKampenColimit.of_iso
NatTrans.naturality
IsPushout.map
Limits.PreservesColimitsOfShape.preservesColimit
Adhesive.van_kampen
Functor.map_mono
preservesMonomorphisms_of_preservesLimitsOfShape
adhesive_of_preserves_and_reflects_isomorphism 📖mathematicalAdhesiveadhesive_of_preserves_and_reflects
Limits.hasLimitOfHasLimitsOfShape
Limits.hasColimitOfHasColimitsOfShape
Limits.reflectsLimitsOfShape_of_reflectsIsomorphisms
Limits.reflectsColimitsOfShape_of_reflectsIsomorphisms
adhesive_of_reflective 📖mathematicalLimits.HasPushoutAdhesiveAdjunction.leftAdjoint_preservesColimits
Adjunction.rightAdjoint_preservesLimits
Limits.hasLimitOfHasLimitsOfShape
Adhesive.hasPushout_of_mono_left
Functor.map_mono
preservesMonomorphisms_of_preservesLimitsOfShape
Limits.PreservesFiniteLimits.preservesFiniteLimits
Limits.PreservesLimits.preservesFiniteLimits
IsPushout.of_hasPushout
Adhesive.van_kampen
CommSq.w
IsPushout.toCommSq
IsPushout.isVanKampen_iff
Adjunction.counit_isIso_of_R_fully_faithful
IsVanKampenColimit.precompose_isIso_iff
Iso.isIso_hom
IsVanKampenColimit.of_iso
IsVanKampenColimit.map_reflective
IsVanKampenColimit.precompose_isIso
Limits.PreservesLimitsOfShape.preservesLimit
Limits.PreservesColimitsOfShape.preservesColimit
Limits.PreservesFiniteColimits.preservesFiniteColimits
Limits.PreservesColimits.preservesFiniteColimits
is_coprod_iff_isPushout 📖mathematicalCommSq
Functor.obj
Discrete
Limits.WalkingPair
discreteCategory
Functor
Functor.category
Functor.const
Limits.Cocone.pt
Limits.pair
Limits.WalkingPair.left
Limits.BinaryCofan.inl
Limits.IsColimit
Limits.WalkingPair.right
CategoryStruct.comp
Category.toCategoryStruct
Limits.BinaryCofan.inr
IsPushout
CommSq.w
Limits.IsColimit.fac
Limits.BinaryCofan.IsColimit.hom_ext
CommSq.w_assoc
Limits.PushoutCocone.condition
Category.assoc
Limits.PushoutCocone.IsColimit.hom_ext
IsPushout.toCommSq

CategoryTheory.Adhesive

Theorems

NameKindAssumesProvesValidatesDepends On
hasPullback_of_mono_left 📖mathematicalCategoryTheory.Limits.HasPullback
hasPushout_of_mono_left 📖mathematicalCategoryTheory.Limits.HasPushout
isPullback_of_isPushout_of_mono_left 📖mathematicalCategoryTheory.IsPushoutCategoryTheory.IsPullbackCategoryTheory.IsPushout.IsVanKampen.isPullback_of_mono_left
van_kampen
isPullback_of_isPushout_of_mono_right 📖mathematicalCategoryTheory.IsPushoutCategoryTheory.IsPullbackCategoryTheory.IsPushout.IsVanKampen.isPullback_of_mono_right
van_kampen'
mono_of_isPushout_of_mono_left 📖mathematicalCategoryTheory.IsPushoutCategoryTheory.MonoCategoryTheory.IsPushout.IsVanKampen.mono_of_mono_left
van_kampen
mono_of_isPushout_of_mono_right 📖mathematicalCategoryTheory.IsPushoutCategoryTheory.MonoCategoryTheory.IsPushout.IsVanKampen.mono_of_mono_right
van_kampen'
toRegularMonoCategory 📖mathematicalCategoryTheory.IsRegularMonoCategoryhasPushout_of_mono_left
CategoryTheory.Limits.pushout.condition
isPullback_of_isPushout_of_mono_left
CategoryTheory.IsPushout.of_hasPushout
van_kampen 📖mathematicalCategoryTheory.IsPushoutCategoryTheory.IsPushout.IsVanKampen
van_kampen' 📖mathematicalCategoryTheory.IsPushoutCategoryTheory.IsPushout.IsVanKampenCategoryTheory.IsPushout.IsVanKampen.flip
CategoryTheory.IsPushout.flip
van_kampen

CategoryTheory.IsPushout

Definitions

NameCategoryTheorems
IsVanKampen 📖MathDef
4 mathmath: CategoryTheory.Adhesive.van_kampen, CategoryTheory.Adhesive.van_kampen', isVanKampen_inl, isVanKampen_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isVanKampen_iff 📖mathematicalCategoryTheory.IsPushoutIsVanKampen
CategoryTheory.IsVanKampenColimit
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.CommSq.w
toCommSq
CategoryTheory.CommSq.w
toCommSq
CategoryTheory.Limits.Cocone.w
Equiv.nonempty_congr
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
isColimit'
CategoryTheory.NatTrans.congr_app
CategoryTheory.NatTrans.naturality
CategoryTheory.IsPullback.paste_horiz
CategoryTheory.Functor.map_id
CategoryTheory.IsPullback.toCommSq
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.PushoutCocone.condition_zero
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w_assoc
CategoryTheory.IsPullback.of_horiz_isIso
CategoryTheory.IsIso.id
isVanKampen_inl 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Limits.BinaryCofan.inl
IsVanKampenCategoryTheory.is_coprod_iff_isPushout
toCommSq
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.BinaryCofan.isVanKampen_iff
CategoryTheory.FinitaryExtensive.vanKampen
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.Limits.pullback.condition
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Limits.pullback.condition_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.lift_snd
CategoryTheory.IsPullback.of_right
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.IsPullback.paste_horiz
CategoryTheory.Category.id_comp
CategoryTheory.IsPullback.paste_vert
CategoryTheory.Limits.BinaryCofan.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id

CategoryTheory.IsPushout.IsVanKampen

Theorems

NameKindAssumesProvesValidatesDepends On
flip 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.IsPushout.IsVanKampen
CategoryTheory.IsPushout.flipCategoryTheory.CommSq.flip
isPullback_of_mono_left 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.IsPushout.IsVanKampen
CategoryTheory.IsPullbackCategoryTheory.IsPullback.flip
CategoryTheory.IsKernelPair.id_of_mono
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.CommSq.flip
CategoryTheory.IsPushout.toCommSq
CategoryTheory.IsPushout.of_horiz_isIso
isPullback_of_mono_right 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.IsPushout.IsVanKampen
CategoryTheory.IsPullbackCategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsKernelPair.id_of_mono
CategoryTheory.IsPushout.toCommSq
CategoryTheory.IsPushout.of_vert_isIso
mono_of_mono_left 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.IsPushout.IsVanKampen
CategoryTheory.MonoCategoryTheory.IsKernelPair.mono_of_isIso_fst
CategoryTheory.IsKernelPair.id_of_mono
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.CommSq.flip
CategoryTheory.IsPushout.toCommSq
CategoryTheory.IsPushout.of_horiz_isIso
mono_of_mono_right 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.IsPushout.IsVanKampen
CategoryTheory.MonoCategoryTheory.IsKernelPair.mono_of_isIso_fst
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsKernelPair.id_of_mono
CategoryTheory.IsPushout.toCommSq
CategoryTheory.IsPushout.of_vert_isIso

CategoryTheory.Type

Theorems

NameKindAssumesProvesValidatesDepends On
adhesive 📖mathematicalCategoryTheory.Adhesive
CategoryTheory.types
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.IsPushout.IsVanKampen.flip
CategoryTheory.IsPushout.flip
CategoryTheory.IsPushout.isVanKampen_inl
CategoryTheory.types.finitaryExtensive
CategoryTheory.Limits.Types.instHasPullbacksType

---

← Back to Index