| Name | Category | Theorems |
CoreHomEquiv 📖 | CompData | — |
CoreHomEquivUnitCounit 📖 | CompData | — |
CoreUnitCounit 📖 | CompData | — |
adjunctionOfEquivLeft 📖 | CompOp | 2 mathmath: adjunctionOfEquivLeft_counit_app, adjunctionOfEquivLeft_unit_app
|
adjunctionOfEquivRight 📖 | CompOp | 2 mathmath: adjunctionOfEquivRight_counit_app, adjunctionOfEquivRight_unit_app
|
comp 📖 | CompOp | 32 mathmath: CategoryTheory.iterated_mateEquiv_conjugateEquiv, isMonoidal_comp, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, comp_homEquiv, toCat_comp_toCat, CategoryTheory.frobeniusMorphism_mate, conjugateEquiv_leftAdjointCompIso_inv, leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.conjugateEquiv_leftUnitor_hom, CategoryTheory.Bicategory.Adjunction.ofCat_comp, CategoryTheory.conjugateEquiv_whiskerRight, CategoryTheory.mateEquiv_hcomp, comp_counit, comp_counit_app, SheafOfModules.conjugateEquiv_pullbackComp_inv, rightOp_eq, CategoryTheory.conjugateEquiv_rightUnitor_hom, IsTriangulated.comp, CommShift.instComp, leftOp_eq, CategoryTheory.conjugateEquiv_associator_hom, comp_unit_app_assoc, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackComp_inv, CategoryTheory.conjugateEquiv_whiskerLeft, leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, comp_unit, comp_counit_app_assoc, CategoryTheory.mateEquiv_square, CategoryTheory.Equivalence.trans_toAdjunction, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, comp_unit_app
|
compCoyonedaIso 📖 | CompOp | 2 mathmath: compCoyonedaIso_inv_app_app, compCoyonedaIso_hom_app_app
|
compUliftCoyonedaIso 📖 | CompOp | 2 mathmath: compUliftCoyonedaIso_hom_app_app_down, compUliftCoyonedaIso_inv_app_app_down
|
compYonedaIso 📖 | CompOp | 2 mathmath: compYonedaIso_hom_app_app, compYonedaIso_inv_app_app
|
corepresentableBy 📖 | CompOp | 1 mathmath: corepresentableBy_homEquiv
|
counit 📖 | CompOp | 278 mathmath: adjunctionOfEquivLeft_counit_app, Triple.isIso_unit_iff_isIso_counit, leftOp_unit, CategoryTheory.Functor.IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, CategoryTheory.mateEquiv_counit_symm, CategoryTheory.isIso_sheafificationAdjunction_counit, whiskerLeftLCounitIsoOfIsIsoUnit_hom_app, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit_app, CategoryTheory.Functor.instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, CategoryTheory.equivEssImageOfReflective_unitIso, CategoryTheory.PullbackShift.adjunction_counit, AlgebraicGeometry.ΓSpec.isIso_adjunction_counit, LeftAdjointCommShift.iso_hom_app_assoc, Rep.coindResAdjunction_counit_app, map_ε_comp_counit_app_unit_assoc, AlgebraicGeometry.Scheme.Modules.restrictAdjunction_counit_app_app, Rep.resCoindAdjunction_counit_app_hom_hom, derivedε_fac_app_assoc, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, instIsIsoFunctorCounitOfIsEquivalence_1, instIsIsoAppCounitOfFullOfFaithful, adjunctionOfEquivRight_counit_app, ofCat_counit, compCoyonedaIso_inv_app_app, LeftAdjointCommShift.iso_inv_app_assoc, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit, CondensedMod.isDiscrete_tfae, rightAdjointLaxMonoidal_μ, CondensedSet.instEpiTopCatAppCounitTopCatAdjunction, IsMonoidal.leftAdjoint_μ, CompHausLike.LocallyConstant.adjunction_counit, Rep.coinvariantsAdjunction_counit_app, CategoryTheory.instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, CondensedSet.instIsIsoFunctorCompactlyGeneratedCounitCompactlyGeneratedAdjunction, CategoryTheory.Functor.reflective', LightCondMod.isDiscrete_tfae, CategoryTheory.SimplicialObject.instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, id_counit, CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, compYonedaIso_hom_app_app, CategoryTheory.conjugateEquiv_symm_apply_app, CategoryTheory.OppositeShift.adjunction_unit, CategoryTheory.Functor.sheafAdjunctionCocontinuous_counit_app_val, CategoryTheory.conjugateEquiv_apply_app, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, instIsIsoAppCounitObjOfFaithfulOfFull, CategoryTheory.Over.postAdjunctionRight_counit_app, AlgebraicGeometry.Scheme.Modules.instIsIsoFunctorCounitRestrictAdjunction, Triple.adj₁_counit_app_rightToLeft_app, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, mapCommMon_counit, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, mkOfHomEquiv_counit_app, LightCondSet.instIsIsoFunctorSequentialCounitSequentialAdjunction, CategoryTheory.Sheaf.instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, CategoryTheory.Pi.monoidalClosed_closed_adj_counit, CategoryTheory.Under.postAdjunctionRight_unit_app_right, Triple.mono_leftToRight_app_iff_mono_adj₁_counit_app, leftAdjointUniq_hom_app_counit_assoc, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, CategoryTheory.Over.mapPullbackAdj_counit_app, derived_counit, Triple.whiskerRight_rightToLeft_assoc, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, AlgebraicGeometry.ΓSpec.adjunction_counit_app', AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit_app', CategoryTheory.Functor.lanUnit_app_app_lanAdjunction_counit_app_app, compUliftCoyonedaIso_inv_app_app_down, CategoryTheory.Functor.lanUnit_app_whiskerLeft_lanAdjunction_counit_app, instIsIsoFunctorCounitOfIsEquivalence, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.conjugateEquiv_counit_symm, CategoryTheory.evaluationAdjunctionRight_counit_app_app, CategoryTheory.Monad.comparison_obj_a, leftAdjointUniq_hom_counit, isIso_counit_of_iso, CategoryTheory.Monad.adj_counit, map_restrictFullyFaithful_counit_app, CategoryTheory.Over.forgetAdjStar_counit_app, leftAdjointUniq_hom_app_counit, CategoryTheory.ExponentiableMorphism.pushforwardId_hom_counit_assoc, AlgebraicGeometry.ΓSpec.adjunction_counit_app, toComonad_ε, isIso_counit_app_of_iso, toCat_counit_toNatTrans, Triple.leftToRight_app_obj, CategoryTheory.Functor.essImage.counit_isIso, shift_counit_app, map_restrictFullyFaithful_counit_app_assoc, Rep.indResAdjunction_counit_app_hom_hom, counit_naturality, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CommShift.commShift_counit, whiskerRight_counit_iso_of_L_fully_faithful, CategoryTheory.Monad.MonadicityInternal.unitCofork_π, mk'_counit, comp_counit, AlgebraicGeometry.SheafedSpace.ofRestrict_hom_c_app, mapMon_counit, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, derived'_counit, Triple.rightToLeft_eq_counits, LightCondSet.instEpiTopCatAppCounitTopCatAdjunction, comp_counit_app, CategoryTheory.ObjectProperty.isColocal_adj_counit_app, AlgebraicGeometry.ΓSpec.unop_locallyRingedSpaceAdjunction_counit_app', leftAdjointCompIso_inv_app, CategoryTheory.Sheaf.adjunction_counit_app_val, CategoryTheory.Over.toOverSectionsAdj_counit_app, toMonad_μ, CategoryTheory.Comonad.adj_counit, unop_counit, CategoryTheory.Codiscrete.adj_counit_app, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit, CategoryTheory.ExponentiableMorphism.ev_def, Rep.resIndAdjunction_counit_app, rightOp_counit, functorialityCounit_app_hom, AlgebraicGeometry.ΓSpec.isIso_locallyRingedSpaceAdjunction_counit, commShiftIso_inv_app_counit_app_assoc, CategoryTheory.mateEquiv_symm_apply, LeftAdjointCommShift.iso_inv_app, counit_epi_of_R_faithful, whiskerLeft_counit_iso_of_L_fully_faithful, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorHoCatCounitHoCatAdj, CategoryTheory.ExponentiableMorphism.pushforwardComp_hom_counit_assoc, CategoryTheory.conjugateEquiv_counit, CategoryTheory.Grpd.freeForgetAdjunction_counit_app, CategoryTheory.Monad.instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, CategoryTheory.ReflQuiv.adj_counit_app, TopologicalSpace.Opens.adjunction_counit_map_functor, op_unit, CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app', CommShift.compatibilityCounit_left, Triple.adj₁_counit_app_rightToLeft_app_assoc, CategoryTheory.plusPlusAdjunction_counit_app_val, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, TopologicalSpace.Opens.adjunction_counit_app_self, commShiftIso_hom_app_counit_app_shift_assoc, CategoryTheory.Coreflective.instIsIsoAppCounitCoreflectorAdjunctionA, rightAdjointUniq_hom_counit_assoc, AlgebraicGeometry.Scheme.ofRestrict_toLRSHom_c_app, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CategoryTheory.Equivalence.toAdjunction_counit, CategoryTheory.Functor.lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, Rep.invariantsAdjunction_counit_app_hom, map_η_comp_η_assoc, RightAdjointCommShift.iso_hom_app_assoc, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit_assoc, inv_counit_map, leftOp_counit, Triple.epi_rightToLeft_app_iff, rightAdjointUniq_hom_counit, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit, CondensedSet.isDiscrete_tfae, leftAdjointUniq_hom_counit_assoc, Triple.leftToRight_eq_counits, counit_isIso_of_R_fully_faithful, CategoryTheory.LiftLeftAdjoint.instIsReflexivePairMapAppCounitOtherMap, rightOp_unit, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, map_μ_comp_counit_app_tensor, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, rightAdjointUniq_hom_app_counit, localization_counit_app, CommShift.compatibilityUnit_right, Triple.map_rightToLeft_app, eq_unit_comp_map_iff, CategoryTheory.SimplicialObject.Truncated.cosk_reflective, left_triangle, homEquiv_symm_id, mkOfUnitCounit_counit, CategoryTheory.Monad.comparison_map_f, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, Triple.whiskerRight_rightToLeft, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, CategoryTheory.ExponentiableMorphism.pushforwardComp_hom_counit, RightAdjointCommShift.iso_inv_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, rightAdjointUniq_hom_app_counit_assoc, TopCat.adj₂_counit, Triple.whiskerLeft_leftToRight_assoc, CategoryTheory.Under.mapPushoutAdj_counit_app, Triple.map_adj₂_counit_app_leftToRight_app, Triple.map_rightToLeft_app_assoc, CategoryTheory.counit_obj_eq_map_counit, whiskerLeftRUnitIsoOfIsIsoCounit_hom_app, RightAdjointCommShift.iso_inv_app_assoc, functorCategory_inverseImage_isomorphisms_counit, CategoryTheory.sheafificationAdjunction_counit_app_val, right_triangle_components, CategoryTheory.Under.postAdjunctionLeft_counit_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, SSet.Truncated.cosk_reflective, homEquiv_counit, counit_naturality_assoc, CategoryTheory.constantSheafAdj_counit_w, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, LeftAdjointCommShift.iso_hom_app, LightCondSet.isDiscrete_tfae, right_triangle, Triple.epi_rightToLeft_app_iff_epi_map_adj₂_counit_app, CategoryTheory.conjugateEquiv_adjunction_id, CategoryTheory.Functor.ranAdjunction_counit, CategoryTheory.OppositeShift.adjunction_counit, right_triangle_components_assoc, TopCat.adj₁_counit, CategoryTheory.Monad.MonadicityInternal.main_pair_G_split, leftAdjointCompIso_hom_app, CategoryTheory.Monad.MonadicityInternal.counitCofork_pt, CategoryTheory.Under.postAdjunctionRight_counit_app_right, whiskerRight_counit_app_app, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive, IsMonoidal.instIsMonoidalCounit, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, homEquiv_symm_rightAdjointUniq_hom_app, commShiftIso_inv_app_counit_app, Triple.leftToRight_app_obj_assoc, CategoryTheory.sheafification_reflective, comp_counit_app_assoc, CategoryTheory.constantPresheafAdj_counit_app_app, CategoryTheory.ExponentiableMorphism.pushforwardId_hom_counit, AlgebraicGeometry.Scheme.ofRestrict_app, left_triangle_components_assoc, CategoryTheory.mateEquiv_counit, RightAdjointCommShift.iso_hom_app, CategoryTheory.constantSheafAdj_counit_app, map_η_comp_η, op_counit, CategoryTheory.instIsReflexivePairMapAppCounitObj, leftAdjointIdIso_hom_app, instIsIsoMapAppCounitOfFaithfulOfFull, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, map_ε_comp_counit_app_unit, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit_assoc, CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app, CategoryTheory.Functor.lanAdjunction_counit_app, unit_comp_map_eq_iff, CategoryTheory.Functor.isIso_lanAdjunction_counit_app_iff, isIso_counit_app_iff_mem_essImage, unop_unit, commShiftIso_hom_app_counit_app_shift, CategoryTheory.Limits.coneOfAdj_π, CategoryTheory.nerveAdjunction.isIso_counit, Localization.η_app, CategoryTheory.Functor.lanUnit_app_app_lanAdjunction_counit_app_app_assoc, left_triangle_components, CategoryTheory.ihom.ihom_adjunction_counit, Triple.whiskerLeft_leftToRight, derivedε_fac_app, CategoryTheory.forgetAdjToOver_counit_app, map_μ_comp_counit_app_tensor_assoc, homEquiv_symm_apply, counit_isSplitMono_of_R_full, inv_map_unit, mapCommGrp_counit, functorialityCounit'_app_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, shift_counit_app_assoc, mapGrp_counit, Triple.mono_leftToRight_app_iff, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit_assoc, AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app, whiskerLeft_counit_app_app, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit, leftAdjointCompNatTrans_app, CategoryTheory.evaluationAdjunctionLeft_counit_app, CategoryTheory.mateEquiv_apply
|
equivHomsetLeftOfNatIso 📖 | CompOp | 3 mathmath: CategoryTheory.Over.postAdjunctionLeft_unit_app_left, equivHomsetLeftOfNatIso_symm_apply, equivHomsetLeftOfNatIso_apply
|
equivHomsetRightOfNatIso 📖 | CompOp | 3 mathmath: equivHomsetRightOfNatIso_apply, CategoryTheory.Under.postAdjunctionRight_counit_app_right, equivHomsetRightOfNatIso_symm_apply
|
homEquiv 📖 | CompOp | 120 mathmath: Rep.invariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.ReflQuiv.adj_homEquiv, LightCondensed.ihomPoints_apply, CategoryTheory.ExponentiableMorphism.homEquiv_symm_apply_eq, homEquiv_naturality_left_square, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_pullbackObjUnitToUnit, rightAdjointLaxMonoidal_μ, comp_homEquiv, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, ModuleCat.extendRestrictScalarsAdj_homEquiv_apply, CategoryTheory.CommSq.instHasLift, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, eq_homEquiv_apply, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, homEquiv_unit, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.CartesianClosed.homEquiv_apply_eq, compPreadditiveYonedaIso_inv_app_app_apply, Rep.homEquiv_def, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, homAddEquiv_sub, restrictFullyFaithful_homEquiv_apply, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, AlgebraicGeometry.ΓSpec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, Rep.resIndAdjunction_homEquiv_symm_apply, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, CategoryTheory.Quiv.adj_homEquiv, ModuleCat.adj_homEquiv, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply', corepresentableBy_homEquiv, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, instMonoCoeEquivHomObjHomEquivOfReflectsMonomorphisms, Rep.resIndAdjunction_homEquiv_apply, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, homAddEquiv_add, Rep.coindResAdjunction_homEquiv_apply, CategoryTheory.Functor.isIso_ranAdjunction_homEquiv_iff, CategoryTheory.Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryTheory.CommSq.right_adjoint_hasLift_iff, homEquiv_naturality_right_square_iff, CategoryTheory.Limits.isLimitConeOfAdj_lift, compPreadditiveYonedaIso_hom_app_app_apply, homAddEquiv_symm_zero, ModuleCat.homEquiv_extendScalarsComp, CategoryTheory.CommSq.left_adjoint_hasLift_iff, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Functor.isIso_lanAdjunction_homEquiv_symm_iff, CategoryTheory.CommSq.right_adjoint, homAddEquiv_symm_neg, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_apply, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, Rep.coindResAdjunction_homEquiv_symm_apply, homAddEquiv_zero, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply, AlgebraicGeometry.ΓSpecIso_inv_ΓSpec_adjunction_homEquiv, CategoryTheory.CommSq.left_adjoint, CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq, LightCondensed.ihomPoints_symm_apply, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, homAddEquiv_symm_apply, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, homAddEquiv_symm_add, homAddEquiv_neg, homEquiv_symm_id, homEquiv_naturality_left_square_iff, homEquiv_naturality_right_symm, Rep.invariantsAdjunction_homEquiv_apply_hom, homEquiv_apply, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_symm_apply, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, CategoryTheory.CommSq.instHasLift_1, CategoryTheory.MonoidalClosed.homEquiv_apply_eq, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, homEquiv_naturality_left_symm, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, rightAdjointLaxMonoidal_ε, homEquiv_counit, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, homEquiv_naturality_right_square, AlgebraicGeometry.ΓSpec_adjunction_homEquiv_eq, PresheafOfModules.sheafificationAdjunction_homEquiv_apply, representableBy_homEquiv, CategoryTheory.ParametrizedAdjunction.homEquiv_eq, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, homAddEquiv_apply, homEquiv_naturality_right_square_assoc, mk'_homEquiv, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, homEquiv_symm_rightAdjointUniq_hom_app, homAddEquiv_symm_sub, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, homEquiv_apply_eq, Rep.coinvariantsAdjunction_homEquiv_apply_hom, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, PresheafOfModules.freeAdjunction_homEquiv, homEquiv_leftAdjointUniq_hom_app, homEquiv_naturality_right, CategoryTheory.ExponentiableMorphism.homEquiv_apply_eq, ModuleCat.homEquiv_extendScalarsId, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, homEquiv_id, homEquiv_naturality_left, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, homEquiv_symm_apply, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, homEquiv_naturality_left_square_assoc, mkOfHomEquiv_homEquiv
|
id 📖 | CompOp | 14 mathmath: IsTriangulated.id, id_counit, CommShift.instId, CategoryTheory.conjugateEquiv_leftUnitor_hom, conjugateEquiv_leftAdjointIdIso_hom, CategoryTheory.Bicategory.Adjunction.ofCat_id, instIsMonoidalId, CategoryTheory.conjugateEquiv_rightUnitor_hom, CategoryTheory.Equivalence.refl_toAdjunction, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackId_hom, id_unit, CategoryTheory.conjugateEquiv_adjunction_id_symm, SheafOfModules.conjugateEquiv_pullbackId_hom, CategoryTheory.conjugateEquiv_adjunction_id
|
instInhabitedId 📖 | CompOp | — |
leftAdjointOfEquiv 📖 | CompOp | 5 mathmath: adjunctionOfEquivLeft_counit_app, leftAdjointOfEquiv_obj, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, leftAdjointOfEquiv_map, adjunctionOfEquivLeft_unit_app
|
mk' 📖 | CompOp | 3 mathmath: mk'_counit, mk'_homEquiv, mk'_unit
|
mkOfHomEquiv 📖 | CompOp | 3 mathmath: mkOfHomEquiv_counit_app, mkOfHomEquiv_unit_app, mkOfHomEquiv_homEquiv
|
mkOfUnitCounit 📖 | CompOp | 2 mathmath: mkOfUnitCounit_unit, mkOfUnitCounit_counit
|
ofIsLeftAdjoint 📖 | CompOp | — |
ofIsRightAdjoint 📖 | CompOp | — |
ofNatIsoLeft 📖 | CompOp | — |
ofNatIsoRight 📖 | CompOp | — |
representableBy 📖 | CompOp | 1 mathmath: representableBy_homEquiv
|
rightAdjointOfEquiv 📖 | CompOp | 5 mathmath: adjunctionOfEquivRight_counit_app, adjunctionOfEquivRight_unit_app, rightAdjointOfEquiv_obj, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, rightAdjointOfEquiv_map
|
toEquivalence 📖 | CompOp | 8 mathmath: toEquivalence_inverse, toEquivalence_counitIso_hom_app, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, toEquivalence_unitIso_hom_app, toEquivalence_counitIso_inv_app, toEquivalence_unitIso_inv_app, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, toEquivalence_functor
|
unit 📖 | CompOp | 271 mathmath: compUliftCoyonedaIso_hom_app_app_down, Triple.isIso_unit_iff_isIso_counit, leftOp_unit, whiskerLeftLCounitIsoOfIsIsoUnit_inv_app, Triple.epi_rightToLeft_app_iff_epi_map_adj₁_unit_app, Localization.ε_app, unit_app_tensor_comp_map_δ_assoc, LeftAdjointCommShift.iso_hom_app_assoc, TopCat.Presheaf.germ_stalkPullbackHom, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, instIsIsoAppUnitObjOfFaithfulOfFull, mapMon_unit, derived'_unit, CategoryTheory.Comonad.comparison_obj_a, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, LeftAdjointCommShift.iso_inv_app_assoc, IsMonoidal.leftAdjoint_μ, SSet.Truncated.sk_coreflective, CategoryTheory.Functor.instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom_assoc, instIsIsoFunctorUnitOfIsEquivalence, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, Triple.rightToLeft_eq_units, CategoryTheory.evaluationAdjunctionLeft_unit_app_app, Rep.resCoindAdjunction_unit_app_hom_hom, CategoryTheory.ReflQuiv.adj_unit_app, localization_unit_app, CategoryTheory.conjugateEquiv_symm_apply_app, CategoryTheory.OppositeShift.adjunction_unit, CategoryTheory.conjugateEquiv_apply_app, ε_comp_map_ε_assoc, mapCommMon_unit, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Functor.ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.PullbackShift.adjunction_unit, homEquiv_unit, CategoryTheory.Under.postAdjunctionRight_unit_app_right, mapCommGrp_unit, unit_mono_of_L_faithful, AlgebraicGeometry.Scheme.kerAdjunction_unit_app, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CategoryTheory.Localization.LeftBousfield.W_adj_unit_app, Triple.whiskerRight_rightToLeft_assoc, unit_app_shift_commShiftIso_inv_app, unit_rightAdjointUniq_hom, Rep.invariantsAdjunction_unit_app, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, mapGrp_unit, map_restrictFullyFaithful_unit_app_assoc, mkOfUnitCounit_unit, unit_app_unit_comp_map_η, toComonad_δ, CategoryTheory.GrothendieckTopology.W_adj_unit_app, CategoryTheory.Comonad.ComonadicityInternal.unitFork_ι, IsMonoidal.leftAdjoint_ε, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, functorialityUnit_app_hom, CategoryTheory.Monad.adj_unit, Rep.coindResAdjunction_unit_app, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_app, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, toMonad_η, Triple.leftToRight_app_obj, instIsIsoAppUnitOfFullOfFaithful, CategoryTheory.SimplicialObject.isoCoskOfIsCoskeletal_hom, unit_rightAdjointUniq_hom_app, restrictFullyFaithful_homEquiv_apply, AlgebraicGeometry.ΓSpec.adjunction_unit_app, CategoryTheory.Over.mapPullbackAdj_unit_app, instIsIsoFunctorUnitOfIsEquivalence_1, CategoryTheory.Functor.isIso_ranAdjunction_unit_app_iff, CategoryTheory.unit_conjugateEquiv_symm, CategoryTheory.unit_conjugateEquiv, isIso_unit_app_iff_mem_essImage, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.Over.toOverSectionsAdj_unit_app, mkOfHomEquiv_unit_app, leftAdjointCompIso_inv_app, IsMonoidal.instIsMonoidalUnit, derived_unit, CategoryTheory.forgetAdjToOver_unit_app, adjunctionOfEquivRight_unit_app, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk_assoc, unop_counit, AlgebraicGeometry.instIsIsoSchemeAppUnitOppositeCommRingCatAdjunctionOfIsAffine, rightOp_counit, CategoryTheory.SimplicialObject.instIsIsoAppUnitTruncatedCoskAdj, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Functor.essImage.unit_isIso, CategoryTheory.mateEquiv_symm_apply, CategoryTheory.Functor.ranCounit_app_app_ranAdjunction_unit_app_app_assoc, LeftAdjointCommShift.iso_inv_app, ε_comp_map_ε, CategoryTheory.ExponentiableMorphism.coev_def, unit_isIso_of_L_fully_faithful, CategoryTheory.instIsIsoAppUnitReflectorAdjunctionObjEssImage, unit_app_shift_commShiftIso_inv_app_assoc, unit_isSplitEpi_of_L_full, op_unit, ModuleCat.homEquiv_extendScalarsComp, CommShift.compatibilityCounit_left, functorialityUnit'_app_hom, TopCat.Presheaf.pullback_obj_obj_ext_iff, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, compYonedaIso_inv_app_app, CategoryTheory.Sheaf.adjunction_unit_app_val, CategoryTheory.Monoidal.Reflective.instIsIsoAppUnitObjIhom, shift_unit_app, RightAdjointCommShift.iso_hom_app_assoc, unit_app_commShiftIso_hom_app_assoc, inv_counit_map, leftOp_counit, CategoryTheory.unit_mateEquiv_symm, isIso_unit_of_iso, Triple.epi_rightToLeft_app_iff, CategoryTheory.Comonad.comparison_map_f, CategoryTheory.Functor.lanAdjunction_unit, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.Comonad.ComonadicityInternal.main_pair_coreflexive, Triple.leftToRight_app_map_adj₁_unit_app_assoc, TopCat.Presheaf.germ_stalkPullbackHom_assoc, unit_leftAdjointUniq_hom_assoc, CategoryTheory.ihom.ihom_adjunction_unit, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map_assoc, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, rightOp_unit, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.unit_mateEquiv, AlgebraicGeometry.Scheme.Modules.restrictAdjunction_unit_app_app, CategoryTheory.sheafificationAdjunction_unit_app, unit_naturality, CategoryTheory.Presheaf.uliftYonedaAdjunction_unit_app_app, compCoyonedaIso_hom_app_app, CategoryTheory.Functor.ranCounit_app_app_ranAdjunction_unit_app_app, comp_unit_app_assoc, toCat_unit_toNatTrans, derivedη_fac_app, ext_iff, derivedη_fac_app_assoc, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_unit, CategoryTheory.Pi.monoidalClosed_closed_adj_unit, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, instIsIsoMapAppUnitOfFaithfulOfFull, CategoryTheory.plusPlusAdjunction_unit_app, CommShift.compatibilityUnit_right, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom, Triple.map_rightToLeft_app, eq_unit_comp_map_iff, functorCategory_inverseImage_isomorphisms_unit, Rep.indResAdjunction_unit_app_hom_hom, left_triangle, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk, unit_leftAdjointUniq_hom_app_assoc, CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CategoryTheory.Codiscrete.adj_unit_app, Triple.whiskerRight_rightToLeft, homEquiv_apply, RightAdjointCommShift.iso_inv_app, CategoryTheory.SimplicialObject.Truncated.sk_coreflective, Triple.whiskerLeft_leftToRight_assoc, Triple.map_rightToLeft_app_assoc, CategoryTheory.evaluationAdjunctionRight_unit_app, unit_app_tensor_comp_map_δ, CategoryTheory.ExponentiableMorphism.unit_pushforwardId_hom, RightAdjointCommShift.iso_inv_app_assoc, right_triangle_components, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map, unit_app_commShiftIso_hom_app, CategoryTheory.Under.postAdjunctionLeft_counit_app, whiskerLeft_unit_app_app, unit_rightAdjointUniq_hom_assoc, isIso_unit_app_of_iso, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.ObjectProperty.isLocal_adj_unit_app, Rep.resIndAdjunction_unit_app, CategoryTheory.SimplicialObject.instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, id_unit, Triple.leftToRight_app, CategoryTheory.conjugateEquiv_adjunction_id_symm, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, LeftAdjointCommShift.iso_hom_app, right_triangle, CategoryTheory.ExponentiableMorphism.unit_pushforwardId_hom_assoc, PresheafOfModules.freeAdjunction_unit_app, map_restrictFullyFaithful_unit_app, CommShift.commShift_unit, ofCat_unit, TopCat.adj₂_unit, Triple.mono_leftToRight_app_iff_mono_adj₂_unit_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom, CategoryTheory.OppositeShift.adjunction_counit, TopCat.adj₁_unit, CategoryTheory.Comonad.ComonadicityInternal.main_pair_F_cosplit, right_triangle_components_assoc, unit_leftAdjointUniq_hom, ModuleCat.extendRestrictScalarsAdj_unit_app_apply, comp_unit, CategoryTheory.ExponentiableMorphism.unit_pushforwardComp_hom, CategoryTheory.Functor.ranCounit_app_whiskerLeft_ranAdjunction_unit_app, unit_app_unit_comp_map_η_assoc, Rep.coinvariantsAdjunction_unit_app_hom, leftAdjointCompIso_hom_app, CategoryTheory.Comonad.instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.unitCompPartialBijectiveAux_symm_apply, CategoryTheory.SimplicialObject.isCoskeletal_iff_isIso, Triple.rightToLeft_app_adj₂_unit_app, PresheafOfModules.toPresheaf_map_sheafificationAdjunction_unit_app, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppUnitHoCatAdj, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, CategoryTheory.Functor.coreflective', Triple.leftToRight_app_obj_assoc, AlgebraicGeometry.instIsIsoFunctorModuleCatCarrierUnitModulesSpecOfAdjunction, CategoryTheory.Grpd.freeForgetAdjunction_unit_app, CategoryTheory.equivEssImageOfReflective_counitIso, leftAdjointIdIso_inv_app, whiskerRight_unit_iso_of_R_fully_faithful, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, left_triangle_components_assoc, CategoryTheory.Over.forgetAdjStar_unit_app_left, whiskerLeftRUnitIsoOfIsIsoCounit_inv_app, RightAdjointCommShift.iso_hom_app, unit_rightAdjointUniq_hom_app_assoc, op_counit, CategoryTheory.Comonad.adj_unit, homEquiv_leftAdjointUniq_hom_app, whiskerRight_unit_app_app, CategoryTheory.Functor.ranAdjunction_unit_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_app_assoc, CategoryTheory.Equivalence.toAdjunction_unit, unit_comp_map_eq_iff, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk_assoc, shift_unit_app_assoc, CategoryTheory.Under.postAdjunctionLeft_unit_app, unop_unit, unit_leftAdjointUniq_hom_app, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_assoc, CategoryTheory.Functor.sheafAdjunctionCocontinuous_unit_app_val, homEquiv_id, left_triangle_components, mk'_unit, whiskerLeft_unit_iso_of_R_fully_faithful, CategoryTheory.unit_obj_eq_map_unit, Triple.whiskerLeft_leftToRight, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk, CategoryTheory.sheafComposeNatTrans_fac, inv_map_unit, CategoryTheory.ExponentiableMorphism.unit_pushforwardComp_hom_assoc, CompHausLike.LocallyConstant.adjunction_unit, Triple.leftToRight_app_map_adj₁_unit_app, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Reflective.instIsIsoAppUnitReflectorAdjunctionA, Triple.rightToLeft_app_adj₂_unit_app_assoc, CategoryTheory.Monoidal.Reflective.instIsIsoMapTensorHomAppUnit, unit_naturality_assoc, CategoryTheory.constantPresheafAdj_unit_app, Triple.mono_leftToRight_app_iff, comp_unit_app, adjunctionOfEquivLeft_unit_app, leftAdjointCompNatTrans_app, CategoryTheory.mateEquiv_apply, CategoryTheory.unitCompPartialBijective_symm_apply, CategoryTheory.LiftRightAdjoint.instIsCoreflexivePairMapAppUnitOtherMap
|