Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Adjunction/Basic.lean

Statistics

MetricCount
DefinitionsCoreHomEquiv, homEquiv, CoreHomEquivUnitCounit, counit, homEquiv, unit, CoreUnitCounit, counit, unit, adjunctionOfEquivLeft, adjunctionOfEquivRight, comp, compCoyonedaIso, compUliftCoyonedaIso, compYonedaIso, corepresentableBy, counit, equivHomsetLeftOfNatIso, equivHomsetRightOfNatIso, homEquiv, id, instInhabitedId, leftAdjointOfEquiv, mk', mkOfHomEquiv, mkOfUnitCounit, ofIsLeftAdjoint, ofIsRightAdjoint, ofNatIsoLeft, ofNatIsoRight, representableBy, rightAdjointOfEquiv, toEquivalence, unit, toAdjunction, IsLeftAdjoint, IsRightAdjoint, adjunction, leftAdjoint, rightAdjoint, «term_⊣_»
41
TheoremshomEquiv_naturality_left, homEquiv_naturality_left_symm, homEquiv_naturality_right, homEquiv_naturality_right_symm, homEquiv_counit, homEquiv_unit, left_triangle, right_triangle, adjunctionOfEquivLeft_counit_app, adjunctionOfEquivLeft_unit_app, adjunctionOfEquivRight_counit_app, adjunctionOfEquivRight_unit_app, compCoyonedaIso_hom_app_app, compCoyonedaIso_inv_app_app, compUliftCoyonedaIso_hom_app_app_down, compUliftCoyonedaIso_inv_app_app_down, compYonedaIso_hom_app_app, compYonedaIso_inv_app_app, comp_counit, comp_counit_app, comp_counit_app_assoc, comp_homEquiv, comp_unit, comp_unit_app, comp_unit_app_assoc, corepresentableBy_homEquiv, counit_naturality, counit_naturality_assoc, eq_homEquiv_apply, eq_unit_comp_map_iff, equivHomsetLeftOfNatIso_apply, equivHomsetLeftOfNatIso_symm_apply, equivHomsetRightOfNatIso_apply, equivHomsetRightOfNatIso_symm_apply, ext, ext_iff, homEquiv_apply, homEquiv_apply_eq, homEquiv_counit, homEquiv_id, homEquiv_naturality_left, homEquiv_naturality_left_square, homEquiv_naturality_left_square_assoc, homEquiv_naturality_left_square_iff, homEquiv_naturality_left_symm, homEquiv_naturality_right, homEquiv_naturality_right_square, homEquiv_naturality_right_square_assoc, homEquiv_naturality_right_square_iff, homEquiv_naturality_right_symm, homEquiv_symm_apply, homEquiv_symm_id, homEquiv_unit, id_counit, id_unit, instIsLeftAdjointLeftAdjoint, instIsRightAdjointRightAdjoint, isLeftAdjoint, isRightAdjoint, leftAdjointOfEquiv_map, leftAdjointOfEquiv_obj, left_triangle, left_triangle_components, left_triangle_components_assoc, mk'_counit, mk'_homEquiv, mk'_unit, mkOfHomEquiv_counit_app, mkOfHomEquiv_homEquiv, mkOfHomEquiv_unit_app, mkOfUnitCounit_counit, mkOfUnitCounit_unit, representableBy_homEquiv, rightAdjointOfEquiv_map, rightAdjointOfEquiv_obj, right_triangle, right_triangle_components, right_triangle_components_assoc, toEquivalence_counitIso_hom_app, toEquivalence_counitIso_inv_app, toEquivalence_functor, toEquivalence_inverse, toEquivalence_unitIso_hom_app, toEquivalence_unitIso_inv_app, unit_comp_map_eq_iff, unit_naturality, unit_naturality_assoc, isLeftAdjoint_functor, isLeftAdjoint_inverse, isRightAdjoint_functor, isRightAdjoint_inverse, refl_toAdjunction, toAdjunction_counit, toAdjunction_unit, trans_toAdjunction, exists_rightAdjoint, exists_leftAdjoint, isEquivalence_of_isRightAdjoint, isLeftAdjoint_comp, isLeftAdjoint_of_isEquivalence, isLeftAdjoint_of_iso, isRightAdjoint_comp, isRightAdjoint_of_isEquivalence, isRightAdjoint_of_iso
104
Total145

CategoryTheory

Definitions

NameCategoryTheorems
«term_⊣_» 📖CompOp

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
CoreHomEquiv 📖CompData
CoreHomEquivUnitCounit 📖CompData
CoreUnitCounit 📖CompData
adjunctionOfEquivLeft 📖CompOp
2 mathmath: adjunctionOfEquivLeft_counit_app, adjunctionOfEquivLeft_unit_app
adjunctionOfEquivRight 📖CompOp
2 mathmath: adjunctionOfEquivRight_counit_app, adjunctionOfEquivRight_unit_app
comp 📖CompOp
32 mathmath: CategoryTheory.iterated_mateEquiv_conjugateEquiv, isMonoidal_comp, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, comp_homEquiv, toCat_comp_toCat, CategoryTheory.frobeniusMorphism_mate, conjugateEquiv_leftAdjointCompIso_inv, leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.conjugateEquiv_leftUnitor_hom, CategoryTheory.Bicategory.Adjunction.ofCat_comp, CategoryTheory.conjugateEquiv_whiskerRight, CategoryTheory.mateEquiv_hcomp, comp_counit, comp_counit_app, SheafOfModules.conjugateEquiv_pullbackComp_inv, rightOp_eq, CategoryTheory.conjugateEquiv_rightUnitor_hom, IsTriangulated.comp, CommShift.instComp, leftOp_eq, CategoryTheory.conjugateEquiv_associator_hom, comp_unit_app_assoc, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackComp_inv, CategoryTheory.conjugateEquiv_whiskerLeft, leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, comp_unit, comp_counit_app_assoc, CategoryTheory.mateEquiv_square, CategoryTheory.Equivalence.trans_toAdjunction, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, comp_unit_app
compCoyonedaIso 📖CompOp
2 mathmath: compCoyonedaIso_inv_app_app, compCoyonedaIso_hom_app_app
compUliftCoyonedaIso 📖CompOp
2 mathmath: compUliftCoyonedaIso_hom_app_app_down, compUliftCoyonedaIso_inv_app_app_down
compYonedaIso 📖CompOp
2 mathmath: compYonedaIso_hom_app_app, compYonedaIso_inv_app_app
corepresentableBy 📖CompOp
1 mathmath: corepresentableBy_homEquiv
counit 📖CompOp
278 mathmath: adjunctionOfEquivLeft_counit_app, Triple.isIso_unit_iff_isIso_counit, leftOp_unit, CategoryTheory.Functor.IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, CategoryTheory.mateEquiv_counit_symm, CategoryTheory.isIso_sheafificationAdjunction_counit, whiskerLeftLCounitIsoOfIsIsoUnit_hom_app, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit_app, CategoryTheory.Functor.instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, CategoryTheory.equivEssImageOfReflective_unitIso, CategoryTheory.PullbackShift.adjunction_counit, AlgebraicGeometry.ΓSpec.isIso_adjunction_counit, LeftAdjointCommShift.iso_hom_app_assoc, Rep.coindResAdjunction_counit_app, map_ε_comp_counit_app_unit_assoc, AlgebraicGeometry.Scheme.Modules.restrictAdjunction_counit_app_app, Rep.resCoindAdjunction_counit_app_hom_hom, derivedε_fac_app_assoc, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, instIsIsoFunctorCounitOfIsEquivalence_1, instIsIsoAppCounitOfFullOfFaithful, adjunctionOfEquivRight_counit_app, ofCat_counit, compCoyonedaIso_inv_app_app, LeftAdjointCommShift.iso_inv_app_assoc, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit, CondensedMod.isDiscrete_tfae, rightAdjointLaxMonoidal_μ, CondensedSet.instEpiTopCatAppCounitTopCatAdjunction, IsMonoidal.leftAdjoint_μ, CompHausLike.LocallyConstant.adjunction_counit, Rep.coinvariantsAdjunction_counit_app, CategoryTheory.instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, CondensedSet.instIsIsoFunctorCompactlyGeneratedCounitCompactlyGeneratedAdjunction, CategoryTheory.Functor.reflective', LightCondMod.isDiscrete_tfae, CategoryTheory.SimplicialObject.instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, id_counit, CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, compYonedaIso_hom_app_app, CategoryTheory.conjugateEquiv_symm_apply_app, CategoryTheory.OppositeShift.adjunction_unit, CategoryTheory.Functor.sheafAdjunctionCocontinuous_counit_app_val, CategoryTheory.conjugateEquiv_apply_app, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, instIsIsoAppCounitObjOfFaithfulOfFull, CategoryTheory.Over.postAdjunctionRight_counit_app, AlgebraicGeometry.Scheme.Modules.instIsIsoFunctorCounitRestrictAdjunction, Triple.adj₁_counit_app_rightToLeft_app, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, mapCommMon_counit, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, mkOfHomEquiv_counit_app, LightCondSet.instIsIsoFunctorSequentialCounitSequentialAdjunction, CategoryTheory.Sheaf.instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, CategoryTheory.Pi.monoidalClosed_closed_adj_counit, CategoryTheory.Under.postAdjunctionRight_unit_app_right, Triple.mono_leftToRight_app_iff_mono_adj₁_counit_app, leftAdjointUniq_hom_app_counit_assoc, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, CategoryTheory.Over.mapPullbackAdj_counit_app, derived_counit, Triple.whiskerRight_rightToLeft_assoc, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, AlgebraicGeometry.ΓSpec.adjunction_counit_app', AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit_app', CategoryTheory.Functor.lanUnit_app_app_lanAdjunction_counit_app_app, compUliftCoyonedaIso_inv_app_app_down, CategoryTheory.Functor.lanUnit_app_whiskerLeft_lanAdjunction_counit_app, instIsIsoFunctorCounitOfIsEquivalence, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.conjugateEquiv_counit_symm, CategoryTheory.evaluationAdjunctionRight_counit_app_app, CategoryTheory.Monad.comparison_obj_a, leftAdjointUniq_hom_counit, isIso_counit_of_iso, CategoryTheory.Monad.adj_counit, map_restrictFullyFaithful_counit_app, CategoryTheory.Over.forgetAdjStar_counit_app, leftAdjointUniq_hom_app_counit, CategoryTheory.ExponentiableMorphism.pushforwardId_hom_counit_assoc, AlgebraicGeometry.ΓSpec.adjunction_counit_app, toComonad_ε, isIso_counit_app_of_iso, toCat_counit_toNatTrans, Triple.leftToRight_app_obj, CategoryTheory.Functor.essImage.counit_isIso, shift_counit_app, map_restrictFullyFaithful_counit_app_assoc, Rep.indResAdjunction_counit_app_hom_hom, counit_naturality, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CommShift.commShift_counit, whiskerRight_counit_iso_of_L_fully_faithful, CategoryTheory.Monad.MonadicityInternal.unitCofork_π, mk'_counit, comp_counit, AlgebraicGeometry.SheafedSpace.ofRestrict_hom_c_app, mapMon_counit, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, derived'_counit, Triple.rightToLeft_eq_counits, LightCondSet.instEpiTopCatAppCounitTopCatAdjunction, comp_counit_app, CategoryTheory.ObjectProperty.isColocal_adj_counit_app, AlgebraicGeometry.ΓSpec.unop_locallyRingedSpaceAdjunction_counit_app', leftAdjointCompIso_inv_app, CategoryTheory.Sheaf.adjunction_counit_app_val, CategoryTheory.Over.toOverSectionsAdj_counit_app, toMonad_μ, CategoryTheory.Comonad.adj_counit, unop_counit, CategoryTheory.Codiscrete.adj_counit_app, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit, CategoryTheory.ExponentiableMorphism.ev_def, Rep.resIndAdjunction_counit_app, rightOp_counit, functorialityCounit_app_hom, AlgebraicGeometry.ΓSpec.isIso_locallyRingedSpaceAdjunction_counit, commShiftIso_inv_app_counit_app_assoc, CategoryTheory.mateEquiv_symm_apply, LeftAdjointCommShift.iso_inv_app, counit_epi_of_R_faithful, whiskerLeft_counit_iso_of_L_fully_faithful, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorHoCatCounitHoCatAdj, CategoryTheory.ExponentiableMorphism.pushforwardComp_hom_counit_assoc, CategoryTheory.conjugateEquiv_counit, CategoryTheory.Grpd.freeForgetAdjunction_counit_app, CategoryTheory.Monad.instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, CategoryTheory.ReflQuiv.adj_counit_app, TopologicalSpace.Opens.adjunction_counit_map_functor, op_unit, CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app', CommShift.compatibilityCounit_left, Triple.adj₁_counit_app_rightToLeft_app_assoc, CategoryTheory.plusPlusAdjunction_counit_app_val, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, TopologicalSpace.Opens.adjunction_counit_app_self, commShiftIso_hom_app_counit_app_shift_assoc, CategoryTheory.Coreflective.instIsIsoAppCounitCoreflectorAdjunctionA, rightAdjointUniq_hom_counit_assoc, AlgebraicGeometry.Scheme.ofRestrict_toLRSHom_c_app, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CategoryTheory.Equivalence.toAdjunction_counit, CategoryTheory.Functor.lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, Rep.invariantsAdjunction_counit_app_hom, map_η_comp_η_assoc, RightAdjointCommShift.iso_hom_app_assoc, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit_assoc, inv_counit_map, leftOp_counit, Triple.epi_rightToLeft_app_iff, rightAdjointUniq_hom_counit, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit, CondensedSet.isDiscrete_tfae, leftAdjointUniq_hom_counit_assoc, Triple.leftToRight_eq_counits, counit_isIso_of_R_fully_faithful, CategoryTheory.LiftLeftAdjoint.instIsReflexivePairMapAppCounitOtherMap, rightOp_unit, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, map_μ_comp_counit_app_tensor, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, rightAdjointUniq_hom_app_counit, localization_counit_app, CommShift.compatibilityUnit_right, Triple.map_rightToLeft_app, eq_unit_comp_map_iff, CategoryTheory.SimplicialObject.Truncated.cosk_reflective, left_triangle, homEquiv_symm_id, mkOfUnitCounit_counit, CategoryTheory.Monad.comparison_map_f, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, Triple.whiskerRight_rightToLeft, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, CategoryTheory.ExponentiableMorphism.pushforwardComp_hom_counit, RightAdjointCommShift.iso_inv_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, rightAdjointUniq_hom_app_counit_assoc, TopCat.adj₂_counit, Triple.whiskerLeft_leftToRight_assoc, CategoryTheory.Under.mapPushoutAdj_counit_app, Triple.map_adj₂_counit_app_leftToRight_app, Triple.map_rightToLeft_app_assoc, CategoryTheory.counit_obj_eq_map_counit, whiskerLeftRUnitIsoOfIsIsoCounit_hom_app, RightAdjointCommShift.iso_inv_app_assoc, functorCategory_inverseImage_isomorphisms_counit, CategoryTheory.sheafificationAdjunction_counit_app_val, right_triangle_components, CategoryTheory.Under.postAdjunctionLeft_counit_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, SSet.Truncated.cosk_reflective, homEquiv_counit, counit_naturality_assoc, CategoryTheory.constantSheafAdj_counit_w, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, LeftAdjointCommShift.iso_hom_app, LightCondSet.isDiscrete_tfae, right_triangle, Triple.epi_rightToLeft_app_iff_epi_map_adj₂_counit_app, CategoryTheory.conjugateEquiv_adjunction_id, CategoryTheory.Functor.ranAdjunction_counit, CategoryTheory.OppositeShift.adjunction_counit, right_triangle_components_assoc, TopCat.adj₁_counit, CategoryTheory.Monad.MonadicityInternal.main_pair_G_split, leftAdjointCompIso_hom_app, CategoryTheory.Monad.MonadicityInternal.counitCofork_pt, CategoryTheory.Under.postAdjunctionRight_counit_app_right, whiskerRight_counit_app_app, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive, IsMonoidal.instIsMonoidalCounit, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, homEquiv_symm_rightAdjointUniq_hom_app, commShiftIso_inv_app_counit_app, Triple.leftToRight_app_obj_assoc, CategoryTheory.sheafification_reflective, comp_counit_app_assoc, CategoryTheory.constantPresheafAdj_counit_app_app, CategoryTheory.ExponentiableMorphism.pushforwardId_hom_counit, AlgebraicGeometry.Scheme.ofRestrict_app, left_triangle_components_assoc, CategoryTheory.mateEquiv_counit, RightAdjointCommShift.iso_hom_app, CategoryTheory.constantSheafAdj_counit_app, map_η_comp_η, op_counit, CategoryTheory.instIsReflexivePairMapAppCounitObj, leftAdjointIdIso_hom_app, instIsIsoMapAppCounitOfFaithfulOfFull, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, map_ε_comp_counit_app_unit, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit_assoc, CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app, CategoryTheory.Functor.lanAdjunction_counit_app, unit_comp_map_eq_iff, CategoryTheory.Functor.isIso_lanAdjunction_counit_app_iff, isIso_counit_app_iff_mem_essImage, unop_unit, commShiftIso_hom_app_counit_app_shift, CategoryTheory.Limits.coneOfAdj_π, CategoryTheory.nerveAdjunction.isIso_counit, Localization.η_app, CategoryTheory.Functor.lanUnit_app_app_lanAdjunction_counit_app_app_assoc, left_triangle_components, CategoryTheory.ihom.ihom_adjunction_counit, Triple.whiskerLeft_leftToRight, derivedε_fac_app, CategoryTheory.forgetAdjToOver_counit_app, map_μ_comp_counit_app_tensor_assoc, homEquiv_symm_apply, counit_isSplitMono_of_R_full, inv_map_unit, mapCommGrp_counit, functorialityCounit'_app_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, shift_counit_app_assoc, mapGrp_counit, Triple.mono_leftToRight_app_iff, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit_assoc, AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app, whiskerLeft_counit_app_app, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit, leftAdjointCompNatTrans_app, CategoryTheory.evaluationAdjunctionLeft_counit_app, CategoryTheory.mateEquiv_apply
equivHomsetLeftOfNatIso 📖CompOp
3 mathmath: CategoryTheory.Over.postAdjunctionLeft_unit_app_left, equivHomsetLeftOfNatIso_symm_apply, equivHomsetLeftOfNatIso_apply
equivHomsetRightOfNatIso 📖CompOp
3 mathmath: equivHomsetRightOfNatIso_apply, CategoryTheory.Under.postAdjunctionRight_counit_app_right, equivHomsetRightOfNatIso_symm_apply
homEquiv 📖CompOp
120 mathmath: Rep.invariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.ReflQuiv.adj_homEquiv, LightCondensed.ihomPoints_apply, CategoryTheory.ExponentiableMorphism.homEquiv_symm_apply_eq, homEquiv_naturality_left_square, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_pullbackObjUnitToUnit, rightAdjointLaxMonoidal_μ, comp_homEquiv, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, ModuleCat.extendRestrictScalarsAdj_homEquiv_apply, CategoryTheory.CommSq.instHasLift, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, eq_homEquiv_apply, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, homEquiv_unit, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.CartesianClosed.homEquiv_apply_eq, compPreadditiveYonedaIso_inv_app_app_apply, Rep.homEquiv_def, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, homAddEquiv_sub, restrictFullyFaithful_homEquiv_apply, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, AlgebraicGeometry.ΓSpec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, Rep.resIndAdjunction_homEquiv_symm_apply, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, CategoryTheory.Quiv.adj_homEquiv, ModuleCat.adj_homEquiv, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply', corepresentableBy_homEquiv, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, instMonoCoeEquivHomObjHomEquivOfReflectsMonomorphisms, Rep.resIndAdjunction_homEquiv_apply, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, homAddEquiv_add, Rep.coindResAdjunction_homEquiv_apply, CategoryTheory.Functor.isIso_ranAdjunction_homEquiv_iff, CategoryTheory.Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryTheory.CommSq.right_adjoint_hasLift_iff, homEquiv_naturality_right_square_iff, CategoryTheory.Limits.isLimitConeOfAdj_lift, compPreadditiveYonedaIso_hom_app_app_apply, homAddEquiv_symm_zero, ModuleCat.homEquiv_extendScalarsComp, CategoryTheory.CommSq.left_adjoint_hasLift_iff, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Functor.isIso_lanAdjunction_homEquiv_symm_iff, CategoryTheory.CommSq.right_adjoint, homAddEquiv_symm_neg, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_apply, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, Rep.coindResAdjunction_homEquiv_symm_apply, homAddEquiv_zero, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply, AlgebraicGeometry.ΓSpecIso_inv_ΓSpec_adjunction_homEquiv, CategoryTheory.CommSq.left_adjoint, CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq, LightCondensed.ihomPoints_symm_apply, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, homAddEquiv_symm_apply, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, homAddEquiv_symm_add, homAddEquiv_neg, homEquiv_symm_id, homEquiv_naturality_left_square_iff, homEquiv_naturality_right_symm, Rep.invariantsAdjunction_homEquiv_apply_hom, homEquiv_apply, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_symm_apply, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, CategoryTheory.CommSq.instHasLift_1, CategoryTheory.MonoidalClosed.homEquiv_apply_eq, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, homEquiv_naturality_left_symm, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, rightAdjointLaxMonoidal_ε, homEquiv_counit, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, homEquiv_naturality_right_square, AlgebraicGeometry.ΓSpec_adjunction_homEquiv_eq, PresheafOfModules.sheafificationAdjunction_homEquiv_apply, representableBy_homEquiv, CategoryTheory.ParametrizedAdjunction.homEquiv_eq, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, homAddEquiv_apply, homEquiv_naturality_right_square_assoc, mk'_homEquiv, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, homEquiv_symm_rightAdjointUniq_hom_app, homAddEquiv_symm_sub, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, homEquiv_apply_eq, Rep.coinvariantsAdjunction_homEquiv_apply_hom, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, PresheafOfModules.freeAdjunction_homEquiv, homEquiv_leftAdjointUniq_hom_app, homEquiv_naturality_right, CategoryTheory.ExponentiableMorphism.homEquiv_apply_eq, ModuleCat.homEquiv_extendScalarsId, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, homEquiv_id, homEquiv_naturality_left, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, homEquiv_symm_apply, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, homEquiv_naturality_left_square_assoc, mkOfHomEquiv_homEquiv
id 📖CompOp
14 mathmath: IsTriangulated.id, id_counit, CommShift.instId, CategoryTheory.conjugateEquiv_leftUnitor_hom, conjugateEquiv_leftAdjointIdIso_hom, CategoryTheory.Bicategory.Adjunction.ofCat_id, instIsMonoidalId, CategoryTheory.conjugateEquiv_rightUnitor_hom, CategoryTheory.Equivalence.refl_toAdjunction, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackId_hom, id_unit, CategoryTheory.conjugateEquiv_adjunction_id_symm, SheafOfModules.conjugateEquiv_pullbackId_hom, CategoryTheory.conjugateEquiv_adjunction_id
instInhabitedId 📖CompOp
leftAdjointOfEquiv 📖CompOp
5 mathmath: adjunctionOfEquivLeft_counit_app, leftAdjointOfEquiv_obj, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, leftAdjointOfEquiv_map, adjunctionOfEquivLeft_unit_app
mk' 📖CompOp
3 mathmath: mk'_counit, mk'_homEquiv, mk'_unit
mkOfHomEquiv 📖CompOp
3 mathmath: mkOfHomEquiv_counit_app, mkOfHomEquiv_unit_app, mkOfHomEquiv_homEquiv
mkOfUnitCounit 📖CompOp
2 mathmath: mkOfUnitCounit_unit, mkOfUnitCounit_counit
ofIsLeftAdjoint 📖CompOp
ofIsRightAdjoint 📖CompOp
ofNatIsoLeft 📖CompOp
ofNatIsoRight 📖CompOp
representableBy 📖CompOp
1 mathmath: representableBy_homEquiv
rightAdjointOfEquiv 📖CompOp
5 mathmath: adjunctionOfEquivRight_counit_app, adjunctionOfEquivRight_unit_app, rightAdjointOfEquiv_obj, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, rightAdjointOfEquiv_map
toEquivalence 📖CompOp
8 mathmath: toEquivalence_inverse, toEquivalence_counitIso_hom_app, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, toEquivalence_unitIso_hom_app, toEquivalence_counitIso_inv_app, toEquivalence_unitIso_inv_app, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, toEquivalence_functor
unit 📖CompOp
271 mathmath: compUliftCoyonedaIso_hom_app_app_down, Triple.isIso_unit_iff_isIso_counit, leftOp_unit, whiskerLeftLCounitIsoOfIsIsoUnit_inv_app, Triple.epi_rightToLeft_app_iff_epi_map_adj₁_unit_app, Localization.ε_app, unit_app_tensor_comp_map_δ_assoc, LeftAdjointCommShift.iso_hom_app_assoc, TopCat.Presheaf.germ_stalkPullbackHom, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, instIsIsoAppUnitObjOfFaithfulOfFull, mapMon_unit, derived'_unit, CategoryTheory.Comonad.comparison_obj_a, CategoryTheory.Comonad.ComonadicityInternal.unitFork_pt, LeftAdjointCommShift.iso_inv_app_assoc, IsMonoidal.leftAdjoint_μ, SSet.Truncated.sk_coreflective, CategoryTheory.Functor.instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom_assoc, instIsIsoFunctorUnitOfIsEquivalence, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, Triple.rightToLeft_eq_units, CategoryTheory.evaluationAdjunctionLeft_unit_app_app, Rep.resCoindAdjunction_unit_app_hom_hom, CategoryTheory.ReflQuiv.adj_unit_app, localization_unit_app, CategoryTheory.conjugateEquiv_symm_apply_app, CategoryTheory.OppositeShift.adjunction_unit, CategoryTheory.conjugateEquiv_apply_app, ε_comp_map_ε_assoc, mapCommMon_unit, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Functor.ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.PullbackShift.adjunction_unit, homEquiv_unit, CategoryTheory.Under.postAdjunctionRight_unit_app_right, mapCommGrp_unit, unit_mono_of_L_faithful, AlgebraicGeometry.Scheme.kerAdjunction_unit_app, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CategoryTheory.Localization.LeftBousfield.W_adj_unit_app, Triple.whiskerRight_rightToLeft_assoc, unit_app_shift_commShiftIso_inv_app, unit_rightAdjointUniq_hom, Rep.invariantsAdjunction_unit_app, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, mapGrp_unit, map_restrictFullyFaithful_unit_app_assoc, mkOfUnitCounit_unit, unit_app_unit_comp_map_η, toComonad_δ, CategoryTheory.GrothendieckTopology.W_adj_unit_app, CategoryTheory.Comonad.ComonadicityInternal.unitFork_ι, IsMonoidal.leftAdjoint_ε, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, functorialityUnit_app_hom, CategoryTheory.Monad.adj_unit, Rep.coindResAdjunction_unit_app, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_app, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, toMonad_η, Triple.leftToRight_app_obj, instIsIsoAppUnitOfFullOfFaithful, CategoryTheory.SimplicialObject.isoCoskOfIsCoskeletal_hom, unit_rightAdjointUniq_hom_app, restrictFullyFaithful_homEquiv_apply, AlgebraicGeometry.ΓSpec.adjunction_unit_app, CategoryTheory.Over.mapPullbackAdj_unit_app, instIsIsoFunctorUnitOfIsEquivalence_1, CategoryTheory.Functor.isIso_ranAdjunction_unit_app_iff, CategoryTheory.unit_conjugateEquiv_symm, CategoryTheory.unit_conjugateEquiv, isIso_unit_app_iff_mem_essImage, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.Over.toOverSectionsAdj_unit_app, mkOfHomEquiv_unit_app, leftAdjointCompIso_inv_app, IsMonoidal.instIsMonoidalUnit, derived_unit, CategoryTheory.forgetAdjToOver_unit_app, adjunctionOfEquivRight_unit_app, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk_assoc, unop_counit, AlgebraicGeometry.instIsIsoSchemeAppUnitOppositeCommRingCatAdjunctionOfIsAffine, rightOp_counit, CategoryTheory.SimplicialObject.instIsIsoAppUnitTruncatedCoskAdj, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Functor.essImage.unit_isIso, CategoryTheory.mateEquiv_symm_apply, CategoryTheory.Functor.ranCounit_app_app_ranAdjunction_unit_app_app_assoc, LeftAdjointCommShift.iso_inv_app, ε_comp_map_ε, CategoryTheory.ExponentiableMorphism.coev_def, unit_isIso_of_L_fully_faithful, CategoryTheory.instIsIsoAppUnitReflectorAdjunctionObjEssImage, unit_app_shift_commShiftIso_inv_app_assoc, unit_isSplitEpi_of_L_full, op_unit, ModuleCat.homEquiv_extendScalarsComp, CommShift.compatibilityCounit_left, functorialityUnit'_app_hom, TopCat.Presheaf.pullback_obj_obj_ext_iff, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, compYonedaIso_inv_app_app, CategoryTheory.Sheaf.adjunction_unit_app_val, CategoryTheory.Monoidal.Reflective.instIsIsoAppUnitObjIhom, shift_unit_app, RightAdjointCommShift.iso_hom_app_assoc, unit_app_commShiftIso_hom_app_assoc, inv_counit_map, leftOp_counit, CategoryTheory.unit_mateEquiv_symm, isIso_unit_of_iso, Triple.epi_rightToLeft_app_iff, CategoryTheory.Comonad.comparison_map_f, CategoryTheory.Functor.lanAdjunction_unit, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.Comonad.ComonadicityInternal.main_pair_coreflexive, Triple.leftToRight_app_map_adj₁_unit_app_assoc, TopCat.Presheaf.germ_stalkPullbackHom_assoc, unit_leftAdjointUniq_hom_assoc, CategoryTheory.ihom.ihom_adjunction_unit, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map_assoc, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, rightOp_unit, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.unit_mateEquiv, AlgebraicGeometry.Scheme.Modules.restrictAdjunction_unit_app_app, CategoryTheory.sheafificationAdjunction_unit_app, unit_naturality, CategoryTheory.Presheaf.uliftYonedaAdjunction_unit_app_app, compCoyonedaIso_hom_app_app, CategoryTheory.Functor.ranCounit_app_app_ranAdjunction_unit_app_app, comp_unit_app_assoc, toCat_unit_toNatTrans, derivedη_fac_app, ext_iff, derivedη_fac_app_assoc, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_unit, CategoryTheory.Pi.monoidalClosed_closed_adj_unit, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, instIsIsoMapAppUnitOfFaithfulOfFull, CategoryTheory.plusPlusAdjunction_unit_app, CommShift.compatibilityUnit_right, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom, Triple.map_rightToLeft_app, eq_unit_comp_map_iff, functorCategory_inverseImage_isomorphisms_unit, Rep.indResAdjunction_unit_app_hom_hom, left_triangle, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk, unit_leftAdjointUniq_hom_app_assoc, CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CategoryTheory.Codiscrete.adj_unit_app, Triple.whiskerRight_rightToLeft, homEquiv_apply, RightAdjointCommShift.iso_inv_app, CategoryTheory.SimplicialObject.Truncated.sk_coreflective, Triple.whiskerLeft_leftToRight_assoc, Triple.map_rightToLeft_app_assoc, CategoryTheory.evaluationAdjunctionRight_unit_app, unit_app_tensor_comp_map_δ, CategoryTheory.ExponentiableMorphism.unit_pushforwardId_hom, RightAdjointCommShift.iso_inv_app_assoc, right_triangle_components, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map, unit_app_commShiftIso_hom_app, CategoryTheory.Under.postAdjunctionLeft_counit_app, whiskerLeft_unit_app_app, unit_rightAdjointUniq_hom_assoc, isIso_unit_app_of_iso, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.ObjectProperty.isLocal_adj_unit_app, Rep.resIndAdjunction_unit_app, CategoryTheory.SimplicialObject.instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, id_unit, Triple.leftToRight_app, CategoryTheory.conjugateEquiv_adjunction_id_symm, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, LeftAdjointCommShift.iso_hom_app, right_triangle, CategoryTheory.ExponentiableMorphism.unit_pushforwardId_hom_assoc, PresheafOfModules.freeAdjunction_unit_app, map_restrictFullyFaithful_unit_app, CommShift.commShift_unit, ofCat_unit, TopCat.adj₂_unit, Triple.mono_leftToRight_app_iff_mono_adj₂_unit_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom, CategoryTheory.OppositeShift.adjunction_counit, TopCat.adj₁_unit, CategoryTheory.Comonad.ComonadicityInternal.main_pair_F_cosplit, right_triangle_components_assoc, unit_leftAdjointUniq_hom, ModuleCat.extendRestrictScalarsAdj_unit_app_apply, comp_unit, CategoryTheory.ExponentiableMorphism.unit_pushforwardComp_hom, CategoryTheory.Functor.ranCounit_app_whiskerLeft_ranAdjunction_unit_app, unit_app_unit_comp_map_η_assoc, Rep.coinvariantsAdjunction_unit_app_hom, leftAdjointCompIso_hom_app, CategoryTheory.Comonad.instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.unitCompPartialBijectiveAux_symm_apply, CategoryTheory.SimplicialObject.isCoskeletal_iff_isIso, Triple.rightToLeft_app_adj₂_unit_app, PresheafOfModules.toPresheaf_map_sheafificationAdjunction_unit_app, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppUnitHoCatAdj, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, CategoryTheory.Functor.coreflective', Triple.leftToRight_app_obj_assoc, AlgebraicGeometry.instIsIsoFunctorModuleCatCarrierUnitModulesSpecOfAdjunction, CategoryTheory.Grpd.freeForgetAdjunction_unit_app, CategoryTheory.equivEssImageOfReflective_counitIso, leftAdjointIdIso_inv_app, whiskerRight_unit_iso_of_R_fully_faithful, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, left_triangle_components_assoc, CategoryTheory.Over.forgetAdjStar_unit_app_left, whiskerLeftRUnitIsoOfIsIsoCounit_inv_app, RightAdjointCommShift.iso_hom_app, unit_rightAdjointUniq_hom_app_assoc, op_counit, CategoryTheory.Comonad.adj_unit, homEquiv_leftAdjointUniq_hom_app, whiskerRight_unit_app_app, CategoryTheory.Functor.ranAdjunction_unit_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_app_assoc, CategoryTheory.Equivalence.toAdjunction_unit, unit_comp_map_eq_iff, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk_assoc, shift_unit_app_assoc, CategoryTheory.Under.postAdjunctionLeft_unit_app, unop_unit, unit_leftAdjointUniq_hom_app, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_assoc, CategoryTheory.Functor.sheafAdjunctionCocontinuous_unit_app_val, homEquiv_id, left_triangle_components, mk'_unit, whiskerLeft_unit_iso_of_R_fully_faithful, CategoryTheory.unit_obj_eq_map_unit, Triple.whiskerLeft_leftToRight, TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk, CategoryTheory.sheafComposeNatTrans_fac, inv_map_unit, CategoryTheory.ExponentiableMorphism.unit_pushforwardComp_hom_assoc, CompHausLike.LocallyConstant.adjunction_unit, Triple.leftToRight_app_map_adj₁_unit_app, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Reflective.instIsIsoAppUnitReflectorAdjunctionA, Triple.rightToLeft_app_adj₂_unit_app_assoc, CategoryTheory.Monoidal.Reflective.instIsIsoMapTensorHomAppUnit, unit_naturality_assoc, CategoryTheory.constantPresheafAdj_unit_app, Triple.mono_leftToRight_app_iff, comp_unit_app, adjunctionOfEquivLeft_unit_app, leftAdjointCompNatTrans_app, CategoryTheory.mateEquiv_apply, CategoryTheory.unitCompPartialBijective_symm_apply, CategoryTheory.LiftRightAdjoint.instIsCoreflexivePairMapAppUnitOtherMap

Theorems

NameKindAssumesProvesValidatesDepends On
adjunctionOfEquivLeft_counit_app 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
leftAdjointOfEquiv
CategoryTheory.Functor.id
counit
adjunctionOfEquivLeft
Equiv.symm
CategoryTheory.CategoryStruct.id
adjunctionOfEquivLeft_unit_app 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
leftAdjointOfEquiv
unit
adjunctionOfEquivLeft
CategoryTheory.CategoryStruct.id
adjunctionOfEquivRight_counit_app 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
rightAdjointOfEquiv
CategoryTheory.Functor.id
counit
adjunctionOfEquivRight
Equiv.symm
CategoryTheory.CategoryStruct.id
adjunctionOfEquivRight_unit_app 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
rightAdjointOfEquiv
unit
adjunctionOfEquivRight
CategoryTheory.CategoryStruct.id
compCoyonedaIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.hom
compCoyonedaIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.map
homEquiv_unit
compCoyonedaIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.Iso.inv
compCoyonedaIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.map
CategoryTheory.Functor.id
counit
homEquiv_counit
compUliftCoyonedaIso_hom_app_app_down 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.uliftCoyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.hom
compUliftCoyonedaIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homEquiv_unit
compUliftCoyonedaIso_inv_app_app_down 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.uliftCoyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.inv
compUliftCoyonedaIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.id
counit
homEquiv_counit
compYonedaIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
compYonedaIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.map
CategoryTheory.Functor.id
counit
homEquiv_counit
compYonedaIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.yoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.Iso.inv
compYonedaIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.map
homEquiv_unit
comp_counit 📖mathematicalcounit
CategoryTheory.Functor.comp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.Category.assoc
comp_counit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
comp_counit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
comp
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_counit_app
comp_homEquiv 📖mathematicalhomEquiv
CategoryTheory.Functor.comp
comp
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
mk'_homEquiv
comp_unit 📖mathematicalunit
CategoryTheory.Functor.comp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.associator
CategoryTheory.Iso.hom
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.Category.assoc
comp_unit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
comp_unit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
comp
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_unit_app
corepresentableBy_homEquiv 📖mathematicalCategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
corepresentableBy
homEquiv
counit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.NatTrans.naturality
counit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counit_naturality
eq_homEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
Equiv.symm
eq_unit_comp_map_iff
eq_unit_comp_map_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
counit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
counit_naturality
left_triangle_components_assoc
unit_naturality_assoc
right_triangle_components
CategoryTheory.Category.comp_id
equivHomsetLeftOfNatIso_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equivHomsetLeftOfNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivHomsetLeftOfNatIso_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivHomsetLeftOfNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivHomsetRightOfNatIso_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equivHomsetRightOfNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivHomsetRightOfNatIso_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivHomsetRightOfNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
ext 📖unitCategoryTheory.NatTrans.ext'
Equiv.injective
homEquiv_unit
right_triangle_components
ext_iff 📖mathematicalunitext
homEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.map
homEquiv_apply_eq 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
Equiv.symm
unit_comp_map_eq_iff
homEquiv_counit 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
homEquiv_symm_apply
homEquiv_id 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
homEquiv_unit
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
homEquiv_naturality_left 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
Equiv.eq_symm_apply
homEquiv_naturality_left_symm
Equiv.symm_apply_apply
homEquiv_naturality_left_square 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
homEquiv_naturality_left
homEquiv_naturality_right
homEquiv_naturality_left_square_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_naturality_left_square
homEquiv_naturality_left_square_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
Equiv.symm_apply_apply
homEquiv_naturality_right_square
homEquiv_naturality_left_square
homEquiv_naturality_left_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
homEquiv_counit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
homEquiv_naturality_right 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
homEquiv_unit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
homEquiv_naturality_right_square 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
homEquiv_naturality_left_symm
homEquiv_naturality_right_symm
homEquiv_naturality_right_square_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_naturality_right_square
homEquiv_naturality_right_square_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
Equiv.apply_symm_apply
homEquiv_naturality_left_square
homEquiv_naturality_right_square
homEquiv_naturality_right_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
Equiv.symm_apply_eq
homEquiv_naturality_right
Equiv.apply_symm_apply
homEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
homEquiv_symm_id 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
homEquiv_counit
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homEquiv_unit 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.map
homEquiv_apply
id_counit 📖mathematicalcounit
CategoryTheory.Functor.id
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
id_unit 📖mathematicalunit
CategoryTheory.Functor.id
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
instIsLeftAdjointLeftAdjoint 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Functor.leftAdjoint
isLeftAdjoint
instIsRightAdjointRightAdjoint 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Functor.rightAdjoint
isRightAdjoint
isLeftAdjoint 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
isRightAdjoint 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
leftAdjointOfEquiv_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
leftAdjointOfEquiv
Equiv.symm
CategoryTheory.CategoryStruct.id
leftAdjointOfEquiv_obj 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
leftAdjointOfEquiv
left_triangle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
unit
CategoryTheory.Functor.whiskerLeft
counit
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.ext'
left_triangle_components
left_triangle_components 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.CategoryStruct.id
left_triangle_components_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
counit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
left_triangle_components
mk'_counit 📖mathematicalcounit
mk'
CoreHomEquivUnitCounit.counit
mk'_homEquiv 📖mathematicalhomEquiv
mk'
CoreHomEquivUnitCounit.homEquiv
Equiv.ext
homEquiv_unit
CoreHomEquivUnitCounit.homEquiv_unit
mk'_unit
mk'_unit 📖mathematicalunit
mk'
CoreHomEquivUnitCounit.unit
mkOfHomEquiv_counit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
mkOfHomEquiv
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CoreHomEquiv.homEquiv
CategoryTheory.CategoryStruct.id
mkOfHomEquiv_homEquiv 📖mathematicalhomEquiv
mkOfHomEquiv
CoreHomEquiv.homEquiv
Equiv.ext
homEquiv_unit
CoreHomEquiv.homEquiv_naturality_right
CategoryTheory.Category.id_comp
mkOfHomEquiv_unit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
mkOfHomEquiv
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CoreHomEquiv.homEquiv
CategoryTheory.CategoryStruct.id
mkOfUnitCounit_counit 📖mathematicalcounit
mkOfUnitCounit
CoreUnitCounit.counit
mkOfUnitCounit_unit 📖mathematicalunit
mkOfUnitCounit
CoreUnitCounit.unit
representableBy_homEquiv 📖mathematicalCategoryTheory.Functor.RepresentableBy.homEquiv
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
representableBy
Equiv.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homEquiv
rightAdjointOfEquiv_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
rightAdjointOfEquiv
Equiv.symm
CategoryTheory.CategoryStruct.id
rightAdjointOfEquiv_obj 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
rightAdjointOfEquiv
right_triangle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
unit
CategoryTheory.Functor.whiskerRight
counit
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.ext'
right_triangle_components
right_triangle_components 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
counit
CategoryTheory.CategoryStruct.id
right_triangle_components_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
counit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
right_triangle_components
toEquivalence_counitIso_hom_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
toEquivalence
toEquivalence_counitIso_inv_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
toEquivalence
CategoryTheory.inv
toEquivalence_functor 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.Equivalence.functor
toEquivalence
toEquivalence_inverse 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.Equivalence.inverse
toEquivalence
toEquivalence_unitIso_hom_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
toEquivalence
toEquivalence_unitIso_inv_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
toEquivalence
CategoryTheory.inv
unit_comp_map_eq_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
counit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
counit_naturality
left_triangle_components_assoc
unit_naturality_assoc
right_triangle_components
CategoryTheory.Category.comp_id
unit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
unit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_naturality

CategoryTheory.Adjunction.CoreHomEquiv

Definitions

NameCategoryTheorems
homEquiv 📖CompOp
8 mathmath: homEquiv_naturality_right, homEquiv_naturality_right_symm, CategoryTheory.Adjunction.mkOfHomEquiv_counit_app, CategoryTheory.Adjunction.mkOfHomEquiv_unit_app, homEquiv_naturality_left_symm, homEquiv_naturality_left, CategoryTheory.Over.coreHomEquivToOverSections_homEquiv, CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_naturality_left 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
Equiv.eq_symm_apply
homEquiv_naturality_left_symm
Equiv.symm_apply_apply
homEquiv_naturality_left_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
homEquiv_naturality_right 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
homEquiv_naturality_right_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
Equiv.symm_apply_eq
homEquiv_naturality_right
Equiv.apply_symm_apply

CategoryTheory.Adjunction.CoreHomEquivUnitCounit

Definitions

NameCategoryTheorems
counit 📖CompOp
2 mathmath: CategoryTheory.Adjunction.mk'_counit, homEquiv_counit
homEquiv 📖CompOp
3 mathmath: homEquiv_unit, CategoryTheory.Adjunction.mk'_homEquiv, homEquiv_counit
unit 📖CompOp
2 mathmath: homEquiv_unit, CategoryTheory.Adjunction.mk'_unit

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_counit 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
homEquiv_unit 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map

CategoryTheory.Adjunction.CoreUnitCounit

Definitions

NameCategoryTheorems
counit 📖CompOp
3 mathmath: right_triangle, CategoryTheory.Adjunction.mkOfUnitCounit_counit, left_triangle
unit 📖CompOp
3 mathmath: CategoryTheory.Adjunction.mkOfUnitCounit_unit, right_triangle, left_triangle

Theorems

NameKindAssumesProvesValidatesDepends On
left_triangle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerLeft
counit
CategoryTheory.NatTrans.id
right_triangle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
unit
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerRight
counit
CategoryTheory.NatTrans.id

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
toAdjunction 📖CompOp
16 mathmath: CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, inverseFunctor_map, symmEquivFunctor_map, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Adjunction.rightOp_eq, toAdjunction_counit, congrLeftFunctor_map, CategoryTheory.Adjunction.leftOp_eq, refl_toAdjunction, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, toAdjunction_unit, trans_toAdjunction, symmEquivInverse_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
isLeftAdjoint_functor 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
functor
isLeftAdjoint_inverse 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
inverse
isLeftAdjoint_functor
isRightAdjoint_functor 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
functor
isRightAdjoint_inverse
isRightAdjoint_inverse 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
inverse
refl_toAdjunction 📖mathematicaltoAdjunction
refl
CategoryTheory.Adjunction.id
toAdjunction_counit 📖mathematicalCategoryTheory.Adjunction.counit
functor
inverse
toAdjunction
counit
toAdjunction_unit 📖mathematicalCategoryTheory.Adjunction.unit
functor
inverse
toAdjunction
unit
trans_toAdjunction 📖mathematicaltoAdjunction
trans
CategoryTheory.Adjunction.comp
functor
inverse

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsLeftAdjoint 📖CompData
62 mathmath: CategoryTheory.Equivalence.isLeftAdjoint_inverse, CategoryTheory.Over.instIsLeftAdjointForget, instIsLeftAdjointDiscreteTensorLeftCompIncl, Rep.instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, CategoryTheory.Presheaf.isLeftAdjoint_of_preservesColimits, AlgebraicGeometry.instIsLeftAdjointModuleCatCarrierModulesSpecOfFunctor, PresheafOfModules.instIsLeftAdjointSheafOfModulesSheafification, CategoryTheory.Under.pushoutIsLeftAdjoint, TopCat.Sheaf.instIsLeftAdjointPullback, SheafOfModules.instIsLeftAdjointPullback, isLeftAdjoint_iff_rightAdjointObjIsDefined_eq_top, CategoryTheory.isLeftAdjoint_iff_hasTerminal_costructuredArrow, CategoryTheory.ihom.instIsLeftAdjointTensorLeft, isLeftAdjoint_of_isEquivalence, Rep.instIsLeftAdjointActionModuleCatRes, AlgebraicGeometry.Scheme.Modules.instIsLeftAdjointPullback, CategoryTheory.Limits.hasLimitsOfShape_iff_isLeftAdjoint_const, TopModuleCat.instIsLeftAdjointModuleCatWithModuleTopology, CategoryTheory.isLeftAdjoint_of_costructuredArrowTerminals, CategoryTheory.hoFunctor.instIsLeftAdjointSSetCatHoFunctor, CategoryTheory.Adjunction.instIsLeftAdjointLeftAdjoint, instIsLeftAdjointPresheafStalkFunctor, ModuleCat.instIsLeftAdjointRestrictScalars, AddCommMonCat.instIsLeftAdjointFree, TopModuleCat.instIsLeftAdjointTopCatFree, CategoryTheory.instIsLeftAdjointOfComonadicLeftAdjoint, CategoryTheory.Under.instIsLeftAdjointCostar, CategoryTheory.isLeftAdjoint_of_preservesColimits_of_isSeparating, CategoryTheory.MorphismProperty.instIsLeftAdjointOverTopMapOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, Rep.instIsLeftAdjointModuleCatCoinvariantsFunctor, CategoryTheory.Under.isLeftAdjoint_post, CategoryTheory.instIsLeftAdjointReflector, IsRightAdjoint.op, SheafOfModules.instIsLeftAdjointOverOverRingCatPushforwardIdSheafOver, CategoryTheory.Limits.instIsLeftAdjointFunctorColim, TopCat.instIsLeftAdjointForgetContinuousMapCarrier, CategoryTheory.evaluationIsLeftAdjoint, IsRightAdjoint.leftOp, CategoryTheory.Equivalence.isLeftAdjoint_functor, TopModuleCat.instIsLeftAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, AddCommGrpCat.instIsLeftAdjointFree, isLeftAdjoint_comp, AlgebraicGeometry.Scheme.Modules.instIsLeftAdjointRestrictFunctor, CategoryTheory.Adjunction.isLeftAdjoint, CategoryTheory.Sheaf.instIsLeftAdjointComposeAndSheafify, CategoryTheory.isLeftAdjoint_square_lift, CategoryTheory.CartesianMonoidalCategory.isLeftAdjoint_prod_functor, isLeftAdjoint_of_rightAdjointObjIsDefined_eq_top, ModuleCat.instIsLeftAdjointExtendScalars, CategoryTheory.IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, CommRingCat.instIsLeftAdjointCommMonCatUnderMonoidAlgebra, CategoryTheory.instIsLeftAdjointTensorLeft, isLeftAdjoint_of_iso, Rep.instIsLeftAdjointIndFunctor, CategoryTheory.instIsLeftAdjointFunctorOppositeSheafPresheafToSheaf, CategoryTheory.Comonad.instIsLeftAdjointCoalgebraForget, CategoryTheory.instIsLeftAdjointOfCoreflective, CategoryTheory.isLeftAdjoint_triangle_lift_comonadic, CategoryTheory.isLeftAdjoint_square_lift_comonadic, CategoryTheory.Over.isLeftAdjoint_post, IsRightAdjoint.rightOp, CategoryTheory.isLeftAdjoint_triangle_lift
IsRightAdjoint 📖CompData
75 mathmath: ModuleCat.instIsRightAdjointCoextendScalars, PresheafOfModules.instIsRightAdjointPushforwardCompFunctorOppositeRingCatWhiskerLeftOp, CategoryTheory.MonoOver.instIsRightAdjointOverForget, IsLeftAdjoint.op, CategoryTheory.isRightAdjoint_triangle_lift_monadic, CategoryTheory.Equivalence.isRightAdjoint_functor, Rep.instIsRightAdjointCoindFunctor, TopModuleCat.instIsRightAdjointTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, SheafOfModules.instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous, CategoryTheory.MorphismProperty.isRightAdjoint_ι_isLocal, CategoryTheory.instIsRightAdjointOfReflective, isRightAdjoint_of_leftAdjointObjIsDefined_eq_top, CategoryTheory.Limits.instIsRightAdjointFunctorLim, sheafPullbackConstruction.instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify, CategoryTheory.OrthogonalReflection.isRightAdjoint_ι, MonCat.instIsRightAdjointForgetMonoidHomCarrier, Rep.instIsRightAdjointModuleCatInvariantsFunctor, CommRingCat.instIsRightAdjointCommMonCatForget₂RingHomCarrierMonoidHomCarrier, CategoryTheory.Over.instIsRightAdjointStar, TopModuleCat.instIsRightAdjointModuleCatIndiscrete, CategoryTheory.instIsRightAdjointSheafΓ, isRightAdjoint_comp, ModuleCat.instIsRightAdjointRestrictScalars, IsLeftAdjoint.rightOp, CategoryTheory.isRightAdjoint_square_lift, CategoryTheory.Over.pullbackIsRightAdjoint, CategoryTheory.Over.isRightAdjoint_post, CategoryTheory.Under.instIsRightAdjointForget, CategoryTheory.isRightAdjointOfStructuredArrowInitials, AlgebraicGeometry.instIsRightAdjointCommRingCatOppositeSchemeΓ, CategoryTheory.isRightAdjoint_square_lift_monadic, CategoryTheory.Limits.hasColimitsOfShape_iff_isRightAdjoint_const, CategoryTheory.isRightAdjoint_iff_hasInitial_structuredArrow, IsLeftAdjoint.leftOp, ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier, AlgebraicGeometry.instIsRightAdjointCommRingCatOppositeLocallyRingedSpaceΓ, CommMonCat.instIsRightAdjointForgetMonoidHomCarrier, CategoryTheory.Adjunction.isRightAdjoint, CategoryTheory.Monad.instIsRightAdjointAlgebraForget, TopModuleCat.instIsRightAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, CategoryTheory.isRightAdjoint_triangle_lift, AddCommMonCat.instIsRightAdjointForgetAddMonoidHomCarrier, instIsRightAdjointCommGrpCatCommMonCatUnits, CategoryTheory.isRightAdjoint_of_preservesLimits_of_isCoseparating, TopCat.Sheaf.instIsRightAdjointPushforward, TopCat.instIsRightAdjointForgetContinuousMapCarrier, isRightAdjoint_iff_leftAdjointObjIsDefined_eq_top, CommRingCat.instIsRightAdjointOppositeObjFunctorTypeYoneda, Rep.instIsRightAdjointActionModuleCatRes, SheafOfModules.instIsRightAdjointPushforward, CategoryTheory.isRightAdjoint_of_preservesLimits_of_solutionSetCondition, isRightAdjoint_of_iso, CategoryTheory.evaluationIsRightAdjoint, CategoryTheory.Adjunction.instIsRightAdjointRightAdjoint, CategoryTheory.sheafToPresheaf_isRightAdjoint, CategoryTheory.Sheaf.instIsRightAdjointSheafComposeOfHasWeakSheafify, AlgebraicGeometry.Scheme.Modules.instIsRightAdjointPushforward, PresheafOfModules.instIsRightAdjointPushforward, CategoryTheory.instIsRightAdjointCoreflector, CategoryTheory.Equivalence.isRightAdjoint_inverse, AlgebraicGeometry.Scheme.Modules.instIsRightAdjointPresheafOfModulesToPresheafOfModules, Rep.instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, instIsRightAdjointGrpCatMonCatUnits, AddCommGrpCat.instIsRightAdjointForgetAddMonoidHomCarrier, SheafOfModules.instIsRightAdjointPushforwardIdSheafRingCat, CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint, instIsRightAdjointSheafSkyscraperSheafFunctorOfHasColimits, CategoryTheory.Under.isRightAdjoint_post, PresheafOfModules.instIsRightAdjointPushforwardIdFunctorOppositeRingCat, CategoryTheory.IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, CommRingCat.instIsRightAdjointForgetRingHomCarrier, instIsRightAdjointPresheafSkyscraperPresheafFunctorOfHasColimits, AlgCat.instIsRightAdjointForgetAlgHomCarrier, isRightAdjoint_of_isEquivalence, GrpCat.instIsRightAdjointForgetMonoidHomCarrier
adjunction 📖CompOp
leftAdjoint 📖CompOp
3 mathmath: CategoryTheory.HasSheafify.isLeftExact, CategoryTheory.Adjunction.instIsLeftAdjointLeftAdjoint, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafLeftAdjointSheafToPresheaf
rightAdjoint 📖CompOp
1 mathmath: CategoryTheory.Adjunction.instIsRightAdjointRightAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalence_of_isRightAdjoint 📖mathematicalCategoryTheory.IsIso
obj
id
comp
leftAdjoint
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Adjunction.ofIsRightAdjoint
CategoryTheory.Adjunction.counit
IsEquivalenceCategoryTheory.Equivalence.isEquivalence_inverse
isLeftAdjoint_comp 📖mathematicalIsLeftAdjoint
comp
isLeftAdjoint_of_isEquivalence 📖mathematicalIsLeftAdjointCategoryTheory.Equivalence.isLeftAdjoint_functor
isLeftAdjoint_of_iso 📖mathematicalIsLeftAdjoint
isRightAdjoint_comp 📖mathematicalIsRightAdjoint
comp
isRightAdjoint_of_isEquivalence 📖mathematicalIsRightAdjointCategoryTheory.Equivalence.isRightAdjoint_functor
isRightAdjoint_of_iso 📖mathematicalIsRightAdjoint

CategoryTheory.Functor.IsLeftAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
exists_rightAdjoint 📖mathematicalCategoryTheory.Adjunction

CategoryTheory.Functor.IsRightAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
exists_leftAdjoint 📖mathematicalCategoryTheory.Adjunction

---

← Back to Index