Documentation Verification Report

Comma

📁 Source: Mathlib/CategoryTheory/Adjunction/Comma.lean

Statistics

MetricCount
DefinitionsadjunctionOfCostructuredArrowTerminals, adjunctionOfStructuredArrowInitials, leftAdjointOfStructuredArrowInitials, leftAdjointOfStructuredArrowInitialsAux, mkInitialOfLeftAdjoint, mkTerminalOfRightAdjoint, rightAdjointOfCostructuredArrowTerminals, rightAdjointOfCostructuredArrowTerminalsAux
8
TheoremsisLeftAdjoint_iff_hasTerminal_costructuredArrow, isLeftAdjoint_of_costructuredArrowTerminals, isRightAdjointOfStructuredArrowInitials, isRightAdjoint_iff_hasInitial_structuredArrow, leftAdjointOfStructuredArrowInitialsAux_apply, leftAdjointOfStructuredArrowInitialsAux_symm_apply, rightAdjointOfCostructuredArrowTerminalsAux_apply, rightAdjointOfCostructuredArrowTerminalsAux_symm_apply
8
Total16

CategoryTheory

Definitions

NameCategoryTheorems
adjunctionOfCostructuredArrowTerminals 📖CompOp
adjunctionOfStructuredArrowInitials 📖CompOp
leftAdjointOfStructuredArrowInitials 📖CompOp
leftAdjointOfStructuredArrowInitialsAux 📖CompOp
2 mathmath: leftAdjointOfStructuredArrowInitialsAux_apply, leftAdjointOfStructuredArrowInitialsAux_symm_apply
mkInitialOfLeftAdjoint 📖CompOp
mkTerminalOfRightAdjoint 📖CompOp
rightAdjointOfCostructuredArrowTerminals 📖CompOp
rightAdjointOfCostructuredArrowTerminalsAux 📖CompOp
2 mathmath: rightAdjointOfCostructuredArrowTerminalsAux_apply, rightAdjointOfCostructuredArrowTerminalsAux_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
isLeftAdjoint_iff_hasTerminal_costructuredArrow 📖mathematicalFunctor.IsLeftAdjoint
Limits.HasTerminal
CostructuredArrow
instCategoryCostructuredArrow
Limits.IsTerminal.hasTerminal
isLeftAdjoint_of_costructuredArrowTerminals
isLeftAdjoint_of_costructuredArrowTerminals 📖mathematicalLimits.HasTerminal
CostructuredArrow
instCategoryCostructuredArrow
Functor.IsLeftAdjoint
isRightAdjointOfStructuredArrowInitials 📖mathematicalLimits.HasInitial
StructuredArrow
instCategoryStructuredArrow
Functor.IsRightAdjoint
isRightAdjoint_iff_hasInitial_structuredArrow 📖mathematicalFunctor.IsRightAdjoint
Limits.HasInitial
StructuredArrow
instCategoryStructuredArrow
Limits.IsInitial.hasInitial
isRightAdjointOfStructuredArrowInitials
leftAdjointOfStructuredArrowInitialsAux_apply 📖mathematicalLimits.HasInitial
StructuredArrow
instCategoryStructuredArrow
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Comma.right
Discrete
discreteCategory
Functor.fromPUnit
Limits.initial
Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
leftAdjointOfStructuredArrowInitialsAux
CategoryStruct.comp
Comma.hom
Functor.map
leftAdjointOfStructuredArrowInitialsAux_symm_apply 📖mathematicalLimits.HasInitial
StructuredArrow
instCategoryStructuredArrow
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Comma.right
Discrete
discreteCategory
Functor.fromPUnit
Limits.initial
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
leftAdjointOfStructuredArrowInitialsAux
CommaMorphism.right
Limits.initial.to
rightAdjointOfCostructuredArrowTerminalsAux_apply 📖mathematicalLimits.HasTerminal
CostructuredArrow
instCategoryCostructuredArrow
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Comma.left
Discrete
discreteCategory
Functor.fromPUnit
Limits.terminal
EquivLike.toFunLike
Equiv.instEquivLike
rightAdjointOfCostructuredArrowTerminalsAux
CommaMorphism.left
Limits.terminal.from
rightAdjointOfCostructuredArrowTerminalsAux_symm_apply 📖mathematicalLimits.HasTerminal
CostructuredArrow
instCategoryCostructuredArrow
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Comma.left
Discrete
discreteCategory
Functor.fromPUnit
Limits.terminal
Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
rightAdjointOfCostructuredArrowTerminalsAux
CategoryStruct.comp
Functor.map
Comma.hom

---

← Back to Index